Package ‘EMMIXuskew’

November 11, 2013

Type Package

Title Fitting Unrestricted Multivariate Skew t Mixture Models

Version 0.11-5

Date 2013-11-11

Author S.X. Lee and G.J. McLachlan

Maintainer Sharon X. Lee <s.xlee@uq.edu.au>

Description Functions to fit finite mixture of unrestricted multivariate skew t (FM-uMST) model, random sample generation, discriminant analysis, 2D and 3D contour plots

License GPL

LazyLoad yes

Suggests rgl, stats, grDevices, KernSmooth

Depends MASS, graphics

NeedsCompilation yes

Repository CRAN

Date/Publication 2013-11-11 08:28:53

R topics documented:

EMMIXuskew-package .. 2
ais .. 3
delta.test ... 4
dfmmst ... 5
DLBCLexample ... 7
dmt ... 8
fmmst .. 9
fmmst.contour.2d .. 11
fmmstDA ... 13
EMMIXuskew-package

Description

This package implements an EM algorithm for fitting mixtures of unrestricted multivariate skew t (FM-uMST) distributions. Functions for random sample generation, discriminant analysis, and visualisation (in 2D and 3D) is also provided.

Details

Package: EMMIXuskew
Type: Package
Version: 0.11-5
Date: 2013-11-11
License: GPL
LazyLoad: yes

Author(s)

S.X. Lee, G.J. McLachlan

References

See Also

fmmst, dfmmst, rfmmst, fmmst.contour.3d
Description
Data on 102 male and 100 female athletes collected at the Australian Institute of Sport.

Usage
data(ais)

Format
A data frame with 202 observations (rows) on the following 14 variables (columns).
- Sex 0 = male or 1 = female
- Ht Height in cm
- Wt Weight in kg
- LBM Lean body mass
- RCC Red cell count
- WCC White cell count
- Hc Hematocrit
- Hg Hematocrit
- Ferr Plasma ferritin concentration
- BMI Body mass index = weight / (height^2)
- SSF sum of skin folds
- Bfat Percent body fat

Label case labels: f-b_ball f-field f-gym f-netball f-row f-swim f-t_400m f-t_sprint
f-tennis m-b_ball m-field m-row m-swim m-t_400m m-t_sprint m-tennis m-w_polo

Sport Sport: b_ball field gym netball row swim t_400m t_sprint tennis w_polo

Source
Richard Telford and Ross Cunningham, Australian National University.

References

Examples
data(ais)
pairs(ais[,2:12], main = "AIS Data", pch = 21,
 bg = c("red", "blue") [unclass(factor(ais$Sex))], upper.panel=NULL)
legend(0.8, 0.8, legend=c("male", "female"), pt.bg = c("red", "blue"), pch=21)
delta.test

Testing for the significance of the skewness parameter in a FM-MST model

Description

Perform a likelihood ratio for the significance of the skewness parameter delta in a multivariate skew t-mixture model.

Usage

delta.test(stmodel=NULL, tmodel=NULL, stloglik, tloglik, r)

Arguments

- **stmodel**: a list containing the parameters of the FM-MST model, including mu, sigma, delta, dof and pro. This is usually an output from a fmmst run.
- **tmodel**: a list containing the parameters of the FM-MT model, including mu, sigma, dof and pro. This is usually an output from a fmmt run.
- **stloglik**: a scalar specifying the log likelihood value of the skew t-mixture model
- **tloglik**: a scalar specifying the log likelihood value of the t-mixture model
- **r**: a scalar specifying the difference in the number of parameters between FM-MST and FM-MT model

Details

A likelihood ratio test for hypotheses:
- H0: delta = 0 (for all components in the mixture model)
- H1: delta different from 0 (for at least one component in the mixture)

The test statistics is LR = -2 (L1 - L2), which follows a chi-squared distribution with r degrees of freedom under H0. r is the difference between the number of parameters in H0 and H1. See references for further details.

Value

returns the P-value of the test

References

See Also

fmmt, fmmst
dfmmst

Examples

delta.test(stloglk=-1343.541, tloglk=-1353.842, r=4)

dfmmst

Multivariate skew t distribution

Description

The probability density function for the unrestricted multivariate skew t (MST) distribution and finite mixture of MSN and MST distributions

Usage

dfmmst(dat, mu = NULL, sigma = NULL, delta = NULL, dof = NULL, pro = NULL, known = NULL, tmethod=1)
dmst(dat, mu = NULL, sigma = NULL, delta = NULL, dof = 1, known = NULL, tmethod=1)

Arguments

dat

the data matrix giving the coordinates of the point(s) where the density is evaluated. This is either a vector of length p or a matrix with p columns.

mu

for dmst, this is a numeric vector of length p representing the location parameter; for dfmmst, this is list of g numeric matrices each having p rows and 1 column containing the location parameter for each component.

sigma

for dmst, this is a numeric positive definite matrix with dimension (p,p) representing the scale parameter; for dfmmst, this is list of g numeric matrices containing the scale parameter for each component.

delta

for dmst, this is a numeric vector of length p representing the skewness parameter; for dfmmst, this is list of g numeric matrices each having p rows and 1 column containing the skewness parameter for each component.

dof

for dmst, this is a positive integer specifying the degrees of freedom; for dfmmst, this is numeric vector of length g representing the degrees of freedom for each component.

pro

the mixing proportions; for dmst, this is equal to 1; for dfmmst, this is vector of length of g specifying the mixing proportions for each component.

known

a list containing the parameters of the model. If specified, it overwrites the values of mu, sigma, delta, dof and pro.

tmethod

(optional) an integer indicating which method to use when computing t distribution function values. See pmst for details.
Details

The function \texttt{dmst} computes the density value of a specified unrestricted multivariate skew t (MST) distribution. If any model parameters are not specified, their default values are used: \(\mu \) and \(\delta \) are zero vectors, \(\sigma \) is the identity matrix, and \(\text{dof} \) is 1.

The function \texttt{dfmmst} computes the density value for a specified mixture of MST distribution. Note that \texttt{dfmmst} expects at least \(\text{dof} \) is specified. Other missing parameters will take the default value described above. When \(g=1 \), \texttt{dfmmst} passes the call to \texttt{dmst}. Model parameters can be passed to \texttt{dmst} and \texttt{dfmmst} through the argument \texttt{known} or listed as individual arguments. If both methods of input were used, the parameters specified in \texttt{known} will be used.

Value

\texttt{dmst} and \texttt{dfmmst} returns a numeric vector of density values

References

See Also

\texttt{rmst}, \texttt{rfmmst}

Examples

```r
# Specifying parameters for dmst
dmst(c(1,2), mu=c(1,5), sigma=diag(2), delta=c(-3,1), dof=4)
obj <- list()
obj$mu <- list(c(17,19), c(5,22), c(6,10))
obj$sigma <- list(diag(2), matrix(c(2,0,0,2), matrix(c(3,7,7,24),2))
obj$delta <- list(c(3,1.5), c(5,10), c(2,0))
obj$dof <- c(1, 2, 3)
obj$pro <- c(0.25, 0.25, 0.5)

# Specifying parameters for dfmmst
dfmmst(matrix(c(1,2,5,6,2,4),3,2), obj$mu, obj$sigma, obj$delta,
obj$dof, obj$pro)

# Using known argument
dfmmst(c(1,2), known=obj)
```
Example results on a Diffuse Large B-cell Lymphoma (DLBCL) data

Description

A sample from the Diffuse Large B-cell Lymphoma (DLBCL) dataset from FlowCAP I is fitted with a FM-uMST model. The original data contain measurements from biopsies of 30 DLBCL patients. Each sample was stained with three antibodies, CD3, CD5, and CD19. This is a subset from one patient.

Usage

data(DLBCLexample)

Format

This example data contains the model parameters of the fitted FM-uMST model, and other values used to produce the Figure 2 given in Lee and McLachlan(2013).

- fit6 an fmmst object of the fitted model
- uMat rgl parameters
- wSize window size of the figure

Source

The raw data is available from the FlowRepository database. https://flowrepository.org/id/FR-FCM-ZZY

References

Examples

data(DLBCLexample)
Not run:
fmmst.contour.3d(model=fit6, level=0.985, drawpoints=FALSE,
 xlab="CD3", ylab="CD5", zlab="CD19", smooth=4,
 xlim=c(-100,750), ylim=c(-200,1050), zlim=c(-100,700), grid=35, component=1:4)
par3d("zoom"=0.8638377, "userMatrix" = matrix(uMat,4,4), windowRect=wSize)
End(Not run)
Description

The probability density function and distribution function for the multivariate Student t distribution and mixtures of multivariate t distribution

Usage

\[
\text{dm}(\text{dat}, \mu, \sigma, \text{dof} = \text{Inf}, \text{log} = \text{FALSE})
\]

\[
\text{pm}(\text{dat}, \mu = \text{rep}(0, \text{length}(\text{dat})), \sigma = \text{diag}(\text{length}(\text{dat})), \text{dof} = \text{Inf}, \text{method} = 1, \ldots)
\]

\[
\text{dfm}(\text{dat}, \mu = \text{NULL}, \sigma = \text{NULL}, \text{dof} = \text{NULL}, \text{pro} = \text{NULL}, \text{known} = \text{NULL})
\]

Arguments

- **dat**: for \text{dm}, this is the data matrix giving the coordinates of the point(s) where the density is evaluated. For \text{pm}, this is either a vector of length \(p\). Currently, only \(p\) up to 20 dimensions is supported.
- **mu**: a numeric vector of length \(p\) representing the location parameter;
- **sigma**: a numeric positive definite matrix with dimension \((p, p)\) representing the scale parameter;
- **dof**: a positive real number specifying the degrees of freedom. If \text{method} = 1, \text{dof} will be rounded to the nearest integer.
- **pro**: the mixing proportions; for \text{dm}, this is equal to 1; for \text{dfm}, this is vector of length \(g\) specifying the mixing proportions for each component.
- **log**: a logical value; if \text{TRUE}, the logarithm of the density is computed.
- **\ldots**: parameters passed to \text{sadmv}, among \text{maxpts}, \text{absrel}, \text{releps}.
- **known**: a list containing the parameters of the model. If specified, it overwrites the values of \text{mu}, \text{sigma}, \text{dof} and \text{pro}.
- **method**: the method to use for computation of t distribution function. See description.

Details

There are three options in \text{pm} for computing multivariate t distribution function values. \text{method} = 1 uses requires \text{dof} to be an integer. This provide interfaces to the Fortran-77 routines by Alan Genz. This is the fastest method of the three options available. \text{method} = 2 uses linear interpolation technique to calculate t distribution function values for a positive real \text{dof}. This method requires double the time of method 1. \text{method} = 3 uses a method described in Genz and Bretz (2002). This is the more accurate method for a non-integer \text{dof}, but more computationally intensive than the other two methods.

Value

The function \text{dm} computes the density value of a specified multivariate t distribution. \text{pm} computes the distribution value for a SINGLE point. \text{dfm} returns a numeric vector of mixture density values.
References

See Also
dmst, dfmmt

Examples

```r
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
dof <- 4
f <- dmt(cbind(x,y,z), mu, sigma,dof)
p1 <- pm(t(c(2,11,3), mu, sigma, dof)
p2 <- pm(t(c(2,11,3), mu, sigma, dof, maxpts=10000, abseps=1e-8)

obj <- list()
obj$mu <- list(c(17,19), c(5,22), c(6,10))
obj$sigma <- list(diag(2), matrix(c(2,0,0,1),2), matrix(c(3,7,7,24),2))
obj$dof <- c(1, 2, 3)
obj$pro <- c(0.25, 0.25, 0.5)
dfmmt(matrix(c(1,2,5,6,2,4),3,2), obj$mu, obj$sigma, obj$dof, obj$pro)
dfmmt(c(1,2), known=obj)
```

Description

Fitting Finite Mixtures of Unrestricted Multivariate Skew t Distributions

Computes maximum likelihood estimators (MLE) for finite mixtures of unrestricted multivariate skew t (FM-MST) model via the EM algorithm.

Usage

```r
fmmst(g = 1, dat, initial = NULL, known = NULL, itmax = 100, 
eps = 1e-03, nkmeans=20, print = T, tmethod=1)
## S3 method for class 'fmmst'
summary(object, ...) 
## S3 method for class 'fmmst'
print(x, ...)
```
Arguments

- **object, x**: an object class of class "fmmst", i.e. a fitted model.
- **g**: a scalar specifying the number of components in the mixture model.
- **dat**: the data matrix giving the coordinates of the point(s) where the density is evaluated. This is either a vector of length \(p \) or a matrix with \(p \) columns.
- **initial** (optional): a list containing the initial parameters of the mixture model. See the 'Details' section. The default is NULL.
- **known** (optional): a list containing parameters of the mixture model that are known and not required to be estimated. See the 'Details' section. The default is NULL.
- **itmax** (optional): a positive integer specifying the maximum number of EM iterations to perform. The default is 100.
- **eps** (optional): a numeric value used to control the termination criteria for the EM loops. It is the maximum tolerance for the absolute difference between the log-likelihood value and the asymptotic log likelihood value. The default is 1e-6.
- **nkmeans** (optional): a numeric value indicating how many k-means trials to be used when searching for the best initial values. The default is 20.
- **print** (optional): a logical value. If TRUE, output for each iteration will be printed out. If FALSE, no output is printed. The default is TRUE. See the 'Details' section.
- **tmeth** (optional): an integer indicating which method to use when computing \(t \) distribution function values. See \(\text{pmt} \) for details.
- ...not used.

Details

The arguments **init** and **known**, if specified, is a list structure containing at least one of **mu**, **sigma**, **delta**, **dof**, **pro** (See dfmmst for the structure of each of these elements). If **init**=FALSE (default), the program uses an automatic approach based on k-means clustering to generate an initial value for the model parameters.

Value

- **mu**: a list of \(g \) numeric matrices containing the location parameter for each component.
- **sigma**: a list of \(g \) numeric matrices containing the scale parameter for each component.
- **delta**: a list of \(g \) numeric matrices containing the skewness parameter for each component.
- **dof**: a numeric vector of length \(g \) representing the degrees of freedom for each component.
- **pro**: a vector of length \(g \) specifying the mixing proportions for each component.
- **tau**: an \(g \) by \(n \) matrix of posterior probability of component membership.
- **clusters**: a vector of length \(n \) of final partition.
- **loglik**: the final log likelihood value.
- **lk**: a vector of log likelihood values at each EM iteration.
iter number of iterations performed.
eps the final absolute difference between the log likelihood value and the asymptotic log likelihood value.
aic, bic Akaike Information Criterion (AIC), Bayes Information Criterion (BIC)

References

See Also

rfmmst, dfmmst, fmmst.contour.2d

Examples

a short demo using AIS data
data(ais)
Fit <- fmmst(2, ais[,c(2,12)], itmax=5)
summary(Fit)
print(Fit)

fmmst.contour.2d

2D and 3D Visualisation of Fitted Contours

Description

Create 2D or 3D contour plot.

Usage

fmmst.contour.2d(dat, model, grid = 50, drawpoints = TRUE, clusters=NULL, levels = 10, map = c("scatter", "heat", "cluster"), component = NULL, xlim, ylim, xlab, ylab, main, tmethod=1, ...)
fmmst.contour.3d(dat, model, grid=20, drawpoints=TRUE, levels=0.9, clusters=NULL, xlim, ylim, zlim, xlab, ylab, zlab, main, component=NULL, ...)
Arguments

- **dat**: the data matrix giving the coordinates of the point(s) where the density is evaluated. This must be a matrix with at least 2 columns for `fmmst.contour.2d` or 3 columns for `fmmst.contour.3d`. If `dat` is not provided, then `xlim`, `ylim` and `zlim` must be provided, and `drawpoints` must be set to `FALSE`.

- **model**: a list containing the parameters of the model and also a vector of cluster labels for `dat`. This is typically an output from `fmmst`, containing `mu`, `sigma`, `delta`, `dof`, `pro` and `clusters`; see `fmmst` for structure of model.

- **grid**: a positive integer specifying the grid size used to calculate the density map.

- **drawpoints**: logical. Points are plotted if `TRUE`.

- **clusters**: a vector of cluster labels to be applied when colouring the points. This only applies when `drawpoints` is `TRUE`.

- **levels**: either a positive integer specifying the number of contour levels to draw or a numeric vector of contour levels to be drawn.

- **map**: character string specifying how to plot the points if `drawpoints=TRUE`. Possible values are "scatter" (default), "heat" and "cluster". See the 'Details' section.

- **component**: the index of the components to be plotted. See the 'Details' section.

- **xlim, ylim, zlim**: x-, y- and z- limits for the plot.

- **xlab, ylab, zlab**: labels for x-, y- and z- axis.

- **main**: title of the plot.

- **tmethod**: (optional) an integer indicating which method to use when computing t distribution function values. See `pmt` for details.

- **...**: additional arguments to `plot.default`

Details

`fmmst.contour.2d` draw contour plots for bivariate densities. The argument `dat` must be provided and must contain at least 2 columns. Note that only the first two columns of `dat` will be used if `dat` have more than 2 columns. For bivariate dataset, the data points can be drawn as a scatter plot by specifying `map="scatter"` (default), or as an intensity plot (`map="heat"`). Alternatively, a cluster map can be drawn instead (`map="cluster"`). Note that if an intensity plot is used, the data points will not be drawn, that is, `drawpoints` will be set to `FALSE`.

The argument `component` specifies which individual component is drawn. When `component=FALSE`, the mixture contour is drawn. If specified, `component` is a integer vector of the index of the components to be drawn. It can only take values between 1 an g inclusive. For example, `component=c(1,3)` will draw the first and third component contours.

If the argument `model` contains the cluster labels (`model$clusters`), the data point will be coloured according to their cluster.

See Also

`fmmst.contour`
Examples

2D plots
obj <- list()
obj$mu <- list(c(17, 19), c(5, 22), c(6, 10))
obj$sigma <- list(diag(2), matrix(c(2, 0, 0, 1), 2), matrix(c(3, 7, 7, 24), 2))
obj$delta <- list(c(3, 1.5), c(5, 10), c(2, 0))
obj$dof <- c(1, 2, 3)
obj$pro <- c(0.25, 0.25, 0.5)
mySample <- rfmmst(3, 500, known=obj)
obj$clusters <- mySample[, 3]
par(mfrow = c(2, 2))
fmmst.contour.2d(mySample, model = obj, clusters = obj$clusters, map = "heat")
fmmst.contour.2d(mySample[, 1:2], model = obj, clusters = obj$clusters, map = "cluster")
fmmst.contour.2d(mySample[, 1:2], model = obj, clusters = obj$clusters, component = 1)

3D plot
Not run:
obj <- list()
obj$mu <- list(c(420, 360, 425), c(160, 570, 200), c(320, 540, 260), c(530, 80, 450))
obj$sigma <- list(matrix(c(9160, 5580, 7000, 5580, 12105, 7160, 7000, 7160, 7250), 3, 3),
 matrix(c(3870, 1810, 1770, 1810, 2900, 1270, 1770, 1270, 1320), 3, 3),
 matrix(c(1695, 1190, 2280, 1190, 2780, 2010, 2280, 2010, 3720), 3, 3),
 matrix(c(1590, 590, 15, 590, 2425, 415, 15, 415, 1870), 3, 3))
obj$delta <- list(c(4.8, -17, -50), c(-4, -80, -60), c(-40, 8, -10), c(-60, 90, -6))
obj$dof <- c(10, 30, 40, 40)
obj$pro <- c(0.125, 0.19, 0.135, 0.55)
mySample <- rfmmst(4, 10000, known=obj)
obj$clusters <- mySample[, 4]
fmmst.contour.3d(mySample[, 1:3], model = obj, levels = 0.95,
 drawpoints = F, clusters = obj$clusters, component = 1:4)
End(Not run)

fmmstDA

Description

performs discriminant analysis (DA) for a specified multivariate skew t mixture distribution.

Usage

fmmstDA(g, dat, model, tmeth=1)
Arguments

- `g`: a scalar specifying the number of components in the mixture model.
- `dat`: the data matrix giving the coordinates of the point(s) to be classified.
- `model`: a list containing the parameters of the model, including `mu`, `sigma`, `delta`, `dof` (for `fmmstda` only) and `pro`.
- `tmethod`: (optional) an integer indicating which method to use when computing t distribution function values. See `pmt` for details.

Details

For the structure of the elements of `model`, see `dfmmst`.

Value

`fmmstda` returns a vector of length `nrow(dat)` of the cluster labels.

References

See Also

- `dfmmst`, `fmmst`

Examples

```r
obj <- list()
obj$mu <- list(c(17,19), c(5,22), c(6,10))
obj$sigma <- list(diag(2), matrix(c(2,0,0,1),2), matrix(c(3,7,7,24),2))
obj$delta <- list(c(3,1.5), c(5,10), c(2,0))
obj$dof <- c(1, 2, 3)
obj$pro <- c(0.25, 0.25, 0.5)
X2 <- rfmmst(3, 50, known=obj)
fmmstda(3, X2[,1:2], obj)
```

Description

Computes maximum likelihood estimators (MLE) for finite mixtures of multivariate t (FM-MT) model via the EM algorithm.
Usage

fmmt(g = 1, dat, initial = NULL, known = NULL, itmax = 100,
 eps = 1e-03, nkmeans=20, print = T)
S3 method for class 'fmmt'
summary(object, ...)
S3 method for class 'fmmt'
print(x, ...)

Arguments

object, x an object class of class "fmmt", i.e. a fitted model.
g a scalar specifying the number of components in the mixture model
dat the data matrix giving the coordinates of the point(s) where the density is evaluated. This is either a vector of length p or a matrix with p columns.
initial (optional) a list containing the initial parameters of the mixture model. See the 'Details' section. The default is NULL.
known (optional) a list containin parameters of the mixture model that are known and not required to be estimated. See the 'Details' section. The default is NULL.
itmax (optional) a positive integer specifying the maximum number of EM iterations to perform. The default is 100.
eps (optional) a numeric value used to control the termination criteria for the EM loops. It is the maximum tolerance for the absolute difference between the log-likelihood value and the asymptotic log likelihood value. The default is 1e-6.
nkmeans (optional) a numeric value indicating how many k-means trials to be used when searching for the best initial values. The default is 20.
print (optional) a logical value. If TRUE, output for each iteration will be printed out. if FALSE, no output is printed. The default is TRUE. See the 'Details' section.
...
not used.

Details

The arguments init and known, if specified, is a list structure containing at least one of mu, sigma, delta, dof, pro (See dfmmst for the structure of each of these elements). If init=FALSE (default), the program uses an automatic approach based on k-means clustering to generate an initial value for the model parameters.

Value

mu a list of g numeric matrices containing the location parameter for each component.
sigma a list of g numeric matrices containing the scale parameter for each component.
\(d\)of a numeric vector of length g representing the degrees of freedom for each component.
pro a vector of length of g specifying the mixing proportions for each component.
tau an g by n matrix of posterior probability of component membership.
clusters a vector of length n of final partition.
loglik the final log likelihood value.
lk a vector of log likelihood values at each EM iteration.
iter number of iterations performed.
eps the final absolute difference between the log likelihood value and the asymptotic log likelihood value.
aic, bic Akaike Information Criterion (AIC), Bayes Information Criterion (BIC)

References

See Also
rfmmst, dfmmst, fmmst.contour.2d

Examples
a short demo using AIS data
data(ais)
fit <- fmm(2, ais[,c(2,12)], itmax=10)
summary(fit)
print(fit)

Description
A subset of the T-cell phosphorylation dataset. The original data contain measurements of blood samples stained with four antibodies, CD4, CD45RA, SLP76 and ZAP70. Measurements from each subject were taken before and after anti-CD3 stimulation. This is a subset of the pre-stimulation data from one subject.

Usage
data(Lympho)

Format
A data frame with 33399 observations (rows) on the following 2 variables (columns).
SLP76 marker 1
ZAP70 marker 2
Source

References

Examples

data(Lympho)
plot(Lympho, main="Lymphoma dataset")
smoothScatter(Lympho, nrpoints=Inf)

rfmmst simulation of mixture data

Description

Generate random sample from a specified mixture of unrestricted multivariate skew t distribution

Usage

rfmmst(g, n, mu, sigma, delta, dof = rep(10, g),
pro = rep(1/g, g), known = NULL)
rmst(n, mu, sigma, delta, dof=1, known)

Arguments

g a scalar specifying the number of components in the mixture model
n either a positive integer specifying the total number of points to be generated or a vector (of length g) of positive integers specifying the number of points to be generated in each component.
mu for rmst, this is a numeric vector of length p representing the location parameter; for rfmmst, this is list of g numeric matrices each having p rows and 1 column containing the location parameter for each component.
sigma for rmst, this is a numeric positive definite matrix with dimension (p,p) representing the scale parameter; for rfmmst, this is list of g numeric matrices containing the scale parameter for each component.
delta for rmst, this is a numeric vector of length p representing the skewness parameter; for rfmmst, this is list of g numeric matrices each having p rows and 1 column containing the skewness parameter for each component.
for rmst, this is a positive integer specifying the degrees of freedom; for rfmmst, this is numeric vector of length g representing the degrees of freedom for each component.

pro the mixing proportions; for rmst, this is equal to 1; for rfmmst, this is vector of length of g specifying the mixing proportions for each component.

known a list containing the parameters of the model. If specified, it overwrites the values of mu, sigma, delta, dof and pro.

Details

rmst generates a sample n multivariate skew t (MST) variables. rfmmst generates a mixture of MST samples. Note that model parameters can be passed to rmst and rfmmst through the argument known or listed as individual arguments. If both methods of input were used, the parameters specified in known will be used.

Value

rmst returns an n by p numeric matrix of generated data. rfmmst returns an n by p+1 numeric matrix of generated data. The first p gives the coordinates of the generated data. The last column specifies which component each data point is generated from.

References

See Also

dmst, dfmmst

Examples

```r
# Should be DIRECTLY executable !! ----
#-- ==> Define data, use random,
#--or do help(data=index) for the standard data sets.
rmst(1,500, c(1,2), diag(2), c(-1,1), 4, 1)
obj <- list()
obj$mu <- list(c(17,19), c(5,22), c(6,10))
obj$sigma <- list(diag(2), matrix(c(2,0,0,1),2), matrix(c(3,7,7,24),2))
obj$delta <- list(c(3,1.5), c(3,10), c(2,0))
obj$dof <- c(1, 2, 3)
obj$pro <- c(0.25, 0.25, 0.5)
rmst(obj, mu=obj$mu, sigma=obj$sigma, delta=obj$delta, dof=obj$dof, pro=obj$pro)
rmst(1, 500, known=obj)
```
Index

*Topic 3d
 fmmst.contour.2d, 11
*Topic EM algorithm
 fmmst, 9
 fmmt, 14
*Topic contour
 fmmst.contour.2d, 11
*Topic datasets
 ais, 3
 DLBCExample, 7
 Lympho, 16
*Topic maximum likelihood estimation
 fmmst, 9
 fmmt, 14
*Topic mixture density
 delta.test, 4
 dfmmst, 5
 dmt, 8
*Topic multivariate distribution
 delta.test, 4
 dfmmst, 5
 dmt, 8
 rfmmst, 17
*Topic multivariate skew t
 delta.test, 4
 dfmmst, 5
 dmt, 8
 fmmst, 9
 fmmt, 14
 rfmmst, 17
*Topic package
 EMMIXuskew-package, 2
*Topic random number
 rfmmst, 17

da, 3
contour, 12

delta.test, 4
dfmmst, 2, 5, 9–11, 14–16, 18
dfmmst (dmt), 8
DLBCExample, 7
dmst, 9, 18
dmst (dfmmst), 5
dmt, 8
EMMIXuskew (EMMIXuskew-package), 2
EMMIXuskew-package, 2
Fit6 (DLBCExample), 7
fmmst, 2, 4, 9, 12, 14
fmmst.contour.2d, 11, 11, 16
fmmst.contour.3d, 2
fmmst.contour.3d (fmmst.contour.2d), 11
fmmstDA, 13
fmmt, 4, 14
Lympho, 16
plot.default, 12
pmt, 5, 10, 12, 14
pmt (dmt), 8
print.fmmst (fmmst), 9
print.fmmt (fmmt), 14
rfmmst, 2, 6, 11, 16, 17
rmst, 6
rmst (rfmmst), 17
summary.fmmst (fmmst), 9
summary.fmmt (fmmt), 14
uMat (DLBCExample), 7
wSize (DLBCExample), 7