Package ‘HBSTM’

January 18, 2014

Type Package
Title Hierarchical Bayesian Space-Time models for Gaussian space-time data.
Version 1.0.1
Date 2014-1-18
Author Pilar Munyoz, Alberto Lopez Moreno
Maintainer Alberto Lopez Moreno <bertolomo@gmail.com>
Description This package fits Hierarchical Bayesian space-Time models for Gaussian data. Furthermore, its functions have been implemented for analysing the fitting qualities of those models.
License GPL (>= 2.0)
Depends methods, MASS, fBasics, maps
NeedsCompilation no
Repository CRAN
Date/Publication 2014-01-18 19:46:54

R topics documented:

HBSTM-package .. 2
Autoregressive-class ... 3
Autoregressive0-class ... 4
coordinates ... 5
estimation ... 5
hbstm .. 6
HBSTM-class .. 8
hbstm.fit .. 9
hirlam .. 10
Hyperpriors-class ... 11
mse .. 12
Mt-class ... 12
HBSTM-package

This package fits Hierarchical Bayesian space-Time models for Gaussian space-time data. Furthermore, its functions have been implemented for analysing the fitting qualities of those models.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>HBSTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-12-24</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>=2.0)</td>
</tr>
<tr>
<td>Depends:</td>
<td>methods, MASS, msm, fBasics, maps</td>
</tr>
</tbody>
</table>

Author(s)

Pilar Munyoz and Alberto Lopez Moreno Maintainer: Alberto Lopez Moreno <bertolomo@gmail.com>

See Also

- Overview: HBSTM-package
- Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0,
Description

"Autoregressive" contains the parameter values of the autoregressive component, and it is an internal class stored in the class "xt".

Slots

avect: An Sx1 "matrix" (S is the number of spatial points on the predicted grid) containing the temporal autoregressive parameter avect.

av0vect: An Sx1 "matrix" containing the temporal autoregressive parameter av0vect.

av0L: A 3x1 "matrix" containing the temporal autoregressive parameter av0L.

spatialA: An object of class "SpatParam" containing the fitted values of the spatial parameters of avect.

sigma2A: Contains the fitted value of the variance sigma2A.

h: An SxS "matrix" containing all the autoregressive space-time parameters.

subdiag: An object of class "VectSubdiag" containing the fitted values of the space-time parameters.

Methods

[signature(x = "Autoregressive", i = "character", j = "missing", drop = "missing"): extract the components of the model.

[<- signature(x = "Autoregressive", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,Hyperpriors,Mu0,Mt0,Xt0
Methods: hbstm,hbstm.fit,results,estimation,resid,mse
Plot: plotRes,plotFit
Data: hirlam,coordinates
Description

"Autoregressive0" contains the hyperprior values of the autoregressive component, and it is an internal class stored in the class "Xt0".

Slots

a0L0: A "vector" of length 3 with the mean hyperprior values of the parameter a0L.
siga0L0: A "matrix" of dimension 3X3 with the hyperprior variance of the parameter a0L.
sigma2A0: A "vector" of length 2 with the hyperprior values of the parameter sigma2A.
spatialA0: An object of class "SpatParam0" containing the hyperprior values of the spatial parameters of avector.
subdiag0: An object of class "VectSubdiag0" containing the hyperprior values of the spatial-temporal parameters.

Methods

[signature(x = "Autoregressive0", i = "character", j = "missing", drop = "missing")]: extract the components of the model.

[<- signature(x = "Autoregressive0", i = "character", j = "missing")]: assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates
coordinates

Coordinates of the dataset "hirlam"

Description
The coordinates data is a data set that contains the spatial coordinates of the space-time data hirlam.

Format
A data frame with 70 observations on the following 2 variables.
- Longitude the longitude coordinates.
- Latitude the latitude coordinates.

estimation
Estimation of the median parameters

Description
Estimates the median parameters of an object of class HBSTM.

Usage
estimation(object,digits)

Arguments
- object an object of class "HBSTM".
- digits integer indicating the number of decimal places to round the median values.

Details
In caste the MCMC samples of the object parameter are a specific component of the model, the others components have value -9999999.

Value
Returns an object of class Parameters with the median estimation of the parameters MCMC samples.

Author(s)
Pilar Munyoz and Alberto Lopez Moreno
See Also

Overview: HBSTM-package
Classes: HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,Hyperpriors,Mu0,Mt0,Xt0
Methods: hbstm,hbstm.fit,results,estimation,resid,mse
Plot: plotRes,plotFit
Data: hirlam,coordinates

Examples

See 'tutorial.pdf', included in the documentation of the package, to see a full example

hbstm

Fitting Hierarchical Bayesian Space Time models

Description

hbstm is used to fit Hierarchical Bayesian Space Time models.

Usage

```r
hbstm(Zt,K,newgrid,reglag,seas,spatlags,hyperpriors,initialvalues, nIter,nBurn,fit,plots,posterior,save,control)
```

Arguments

- **Zt**: MxT "data.frame" containing the data. The rows contains the "M" spatial points and the columns the "T" temporal observations.
- **K**: MxS "matrix" that relates the observed spatial points with the new Grid. S is the number of predicted spatial points.
- **newGrid**: An Sx2 "data.frame" containing the "Longitude" and the "Latitude" of the new Grid.
- **reglag**: A vector containing the temporal autoregressive lags of the model.
- **seas**: A vector containing the seasonal coefficients of the model.
- **spatlags**: A vector of length 4 containing the spatial lags of the model. See details for more information.
- **hyperpriors**: An object of class Hyperpriors containing all the values of the model hyperpriors.
- **initialvalues**: An object of class Parameters containing all the initial values of the model parameters.
- **nIter**: Number of Gibbs Sampling iterations. Default value is 1000.
- **nBurn**: Number of burn-in samples. This number of samples will be discarded before making any inference. Default value is the 20 percent of nIter.
- **fit**: A "logical" indicating whether the HBSTM is fitted.
plots: A "logical" indicating whether the method shows the plots of the execution (The mse, Zt vs X*Yt and the ACF/PACF of the residuals.

posterior: A "character" indicating whether the function returns the 'mean' and 'sd' the fitted values of Yt or returns the 'median' with its 95 percent credibility intervals.

save: A "character" indicating if, for each iteration, the algorithm saves the estimation of certain parameters. See "Details" for more information.

control: A list of control parameters. See "Details".

Details

Each position of the argument spatlags refers to the spatial lags of a specified direction. These four directions are "east-west", "north-south", "northwest-southeast" and "northeast-southwest".

The save argument is a "character" that can have any of the following options:

- "all": Save an object of class Parameters.
- "Mu": Save an object of class Mu.
- "Mt": Save an object of class Mt.
- "Xt": Save an object of class Xt.

The control argument is a list that can supply any of the following components:

- "time": A "logical" indicating whether the method shows the estimated time of execution.
- "timerem": A "logical" indicating whether the method shows the estimated remaining time of execution.
- "seed": The seed to use in the function "set.seed" and set it to fit the model.

Value

hbstm returns an object of class HBSTM

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates

Examples

See 'tutorial.pdf', included in the documentation of the package, to see a full example
HBSTM-class

Description

"HBSTM" contains all the information of the fitted Hierarchical Bayesian Space-Time model.

Slots

Parameters: An object of "Parameters" containing all the parameters of the fitted model.

Hyperpriors: An object of class "Hyperpriors" containing all the hyperpriors used in the fitted model.

seed: The seed used to fit the model.

mse: A vector containing the MSE of each iteration of the algorithm.

iterations: The total number of iterations that the algorithm has executed.

newGrid: An Sx2 "matrix" (S is the number of spatial points of the predicted grid) containing the Longitude (1st col.) and the Latitudes (2nd col.) of the new grid.

K: An MxS "matrix" (M = observed spatial points) that relates the observations to the new grid.

Zt: A MxT "matrix" (T is the temporal points) containing the data.

fitted: An "array" which contains the estimation of the fitted values of 'Yt'. The dimension of the array is SxTx2 when the algorithm estimates the mean and the standard deviation and is SxTx3 when the algorithm estimates the median and its 95 percent credibility intervals.

residuals: A MxT "matrix" with the obtained model residuals.

MCMCsample: A "list" of length: the number of executed iterations containing the MCMC samples of the objects of class "Parameters", "Mu", "Mt" or "Xt", for each iteration.

MCMCclass: A "character" that specifies which type of object is stored in MCMCsample. The options are "Parameters", "Mu", "Mt" or "Xt"

Methods

[signature(x = "HBSTM", i = "character", j = "missing", drop = "missing"): extract the components of the model.

[<- signature(x = "HBSTM", i = "character", j = "missing"): assign values to the components of the model.

hbstm.fit signature(HBSTM = "HBSTM", niter = "numeric"): ...

hbstm.save signature(HBSTM = "HBSTM", name = "character"): ...

Author(s)

Pilar Munyoz and Alberto Lopez Moreno
Fitted function for Hierarchical Bayesian Space Time models

Description

This is the basic computing engine that hbstm uses to fit Hierarchical Bayesian Space Time models. In general, this should not be used directly, unless by experienced users.

Usage

hbstm.fit(HBST, nIter, nburn, time, timerem, plots, posterior, save)

Arguments

HBSTM: An object of class "HBSTM".
nIter: Number of Gibbs Sampling iterations. Default value is 1000.
nBurn: Number of burn-in samples. This number of samples will be discarded before making any inference. Default value is the 20 percent of nIter.
time: A "logical" indicating whether the method shows the estimated time of execution.
timerem: A "logical" indicating whether the method shows the estimated remaining time of execution.
plots: A "logical" indicating whether the method shows the plots of the execution (the mse, Zt vs K*Yt and the ACF/PACF of the residuals).
posterior: A "character" indicating whether the function returns the mean and the standard deviation of the fitted values of Yt or returns the median with its 95 percent credibility intervals.
save: A "character" indicating if, for each iteration, the algorithm save the estimation of certain parameters. See "Details" for more information.

Details

The save argument is a "character" that can have any of the following options:
- "all": Save an object of class Parameters.
- "Mu": Save an object of class Mu.
- "Mt": Save an object of class Mt.
- "Xt": Save an object of class Xt.
Value

hbstm.fit returns an object of class HBSTM.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0,
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates

Examples

See 'tutorial.pdf', included in the documentation of the package, to see a full example

hirlam hirlam

Description

The data store the temperature, which is collected in a grid of 70 points (n=7 x m=10 points in the grid) in the area that extends from 4 degrees 30" W to 6 degrees 30"W longitude, and from 35 degrees 3"N to 36 degrees 5"N. The analysed period covers January 1st 2009 to December 31st 2010; the frequency of the data is every 3 hours (temporal reference system is UTC): it starts at 00:00 (daily analysis) and forecasting is at 3:00, 6:00, 9:00, 12:00, 15:00, 18:00 and 21:00. The temperature is recorded every day, eight times a day; so we have a time series for each variable: one for each point on the grid with 5824 time observations.

Format

A data frame with 70 x 5824 observations.

The rows represent the spatial points ordered from up to down and left to right in the hirlam coordinates.

The columns represent the time observations.
Hyperpriors-class

Class "Hyperpriors"

Description

"Hyperpriors" contains all the hyperpriors of the fitted HBSTM. It is an internal class and is stored in "HBSTM"

Slots

Mu0: An object of class "Mu0" containing all the hyperpriors of the component "Mu".
Mt0: An object of class "Mt0" containing all the hyperpriors of the component "Mt".
Xt0: An object of class "Xt0" containing all the hyperpriors of the component "Xt".
sigma2Y0: A "vector" of length 2 with the hyperprior values of the parameter sigma2Y.
sigma2E0: A "vector" of length 2 with the hyperprior values of the parameter sigma2E.

Methods

[signature(x = "Hyperpriors", i = "character", j = "missing", drop = "missing"): extract the components of the model.

[<- signature(x = "Hyperpriors", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0, sigma2Y0, sigma2E0
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates
Description

Calculate the mean square error of an object of class `HBSTM`.

Usage

```r
mse(object)
```

Arguments

- `object`: An object of class "HBSTM".

Value

Returns a "numeric" with the mean square error value.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: `HBSTM-package`
Classes: `HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,Hyperpriors,Mu0,Mt0,Xt0`
Methods: `hbstm,hbstm.fit,results,estimation,resid,mse`
Plot: `plotRes,plotFit`
Data: `hirlam,coordinates`
Mt0-class

Methods

[signature(x = "Mt", i = "character", j = "missing", drop = "missing"): extract the components of the model.

[<- signature(x = "Mt", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0, Mt0
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates

Mt0-class

Class "Mt0"

Description

"Mt0" contains the hyperprior values of the seasonal component and it is an internal class stored in "Parameters0".

Slots

seas0: A "list" of objects of class "Seas0", one for each seasonality of the model.

Methods

[signature(x = "Mt0", i = "character", j = "missing", drop = "missing"): extract the components of the model.

[<- signature(x = "Mt0", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno
See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0,
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates

Mu-class

Class "Mu"

Description

"Mu" contains the parameter values of the mean component and is an internal class stored in "Parameters".

Slots

muvect: An Sx1 "matrix" (S is the number of spatial points of the predicted grid) containing the temporal autoregressive parameter muvect
mu0vect: An Sx1 "matrix" containing the temporal autoregressive parameter mu0vect
mu0L: A 3x1 "matrix" containing the temporal autoregressive parameter a0L
sigma2mu: Contains the fitted value of the variance sigma2Mu.
spatialMu: An object of class "SpatParam" containing the fitted values of the spatial parameters of muvect.

Methods

[signature(x = "Mu", i = "character", j = "missing", drop = "missing"): extract the components of the model.
[signature(x = "Mu", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0,
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates
Mu0-class

Description

“Mu0” contains the hyperprior values of the mean component and it is an internal class stored in the class "Parameters0".

Slots

mu0L: A "vector" of length 3 with the mean hyperprior values of the parameter mu0L
sigma0L: A "matrix" of dimension 3X3 with the hyperprior variance of the parameter mu0L
sigma2Mu: A "vector" of length 2 with the hyperprior values of the parameter sigma2Mu
spatialMu: An object of class "SpatParam0" containing the hyperprior values of the spatial parameters of Mu

Methods

[signature(x = "Mu0", i = "character", j = "missing", drop = "missing"): extract the components of the model.
[<- signature(x = "Mu0", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, X0, X0
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates
Parameters-class

Class "Parameters"

Description

"Parameters" contains all the values of the fitted HBSTM parameters and it is an internal class stored in "HBSTM".

Slots

- **mu**: An object of class "Mu" containing the parameters of the mean component.
- **mt**: An object of class "Mt" containing the parameters of the seasonal component.
- **xt**: An object of class "Xt" containing the parameters of the autoregressive space-time component.
- **yt**: A "matrix" of dimension SxT (S = predicted spatial points and T = temporal points) containing the fitted values of the parameter yt.
- **sigma2Y**: Contains the fitted value of the variance sigma2Y.
- **sigma2E**: Contains the fitted value of the variance sigma2E.

Methods

- ```signature(x = "Parameters", i = "character", j = "missing", drop = "missing")```:
 extract the components of the model.
- ```signature(x = "Parameters", i = "character", j = "missing")```:
 assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates
Description

Fits an object of class HBSTM

Usage

plotFit(object, time, values)

Arguments

object: An object of class "HBSTM".
time: A integer indicating the time data to show in the spatial grid. By default, it is the last temporal observation.
values: A "logical" indicating whether the function returns the values shown in the plot.

Value

By default, plotFit returns an object of class "NULL". If the attribute matrices is TRUE, plotFit returns a "data.frame" with three variables:

"Zt" : The data in a fixed temporal observation specified by the attribute codetime.
"EstZt" : The data estimation in a fixed temporal observation specified by the attribute codetime.
"Et" : The residuals extracted from "Zt" and "EstZt".

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0,
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates

Examples

See 'tutorial.pdf', included in the documentation of the package, to see a full example
Description

Plot the residuals of the fitted values of an object of class HBSTM.

Usage

plotRes(object, point, ARlags, ARperiod)

Arguments

object An object of class "HBSTM".
point A integer indicating the spatial point to show the results. By default a random spatial point is selected.
ARlags Maximum lag at which the ACF and the PACF are calculated. Default is $10 \times \log_{10}(N/m)$, where N is the number of observations and m the number of series. It will be automatically limited to one less than the number of observations in the series.
ARperiod The period of the data. Prints in red the lag in the period.

Value

null

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, X0, ...
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates

Examples

See 'tutorial.pdf', included in the documentation of the package, to see a full example
Description

It shows the results of fitting an object of class HBSTM.

Usage

results(object, spatTemp, inter, digits, component, plots, file)

Arguments

- **object**: An object of class "HBSTM".
- **spatTemp**: A list of vectors containing the spatial and the temporal points to show. See details.
- **inter**: An optional numeric value for the interval credibility level. Default is 0.95
- **digits**: Integer indicating the number of decimal places to round the values.
- **component**: An optional "character" indicating which component have to be shown ("Parameters", "Mu", "Mt" or "Xt").
- **plots**: Plot the medians and the credibility intervals of the parameters.
- **file**: An optional "character" containing the name of the .tex file where the results are stored (in the current work directory). By default the function does not store the results.

Details

Each position in the spatTemp list contains a numerical vector, in which the first position refers to a spatial point of the data and the second position to a temporal point of the data.

Value

null

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, X0
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates
Seas-class

Class "Seas"

Description

"Seas" contains the parameter values of the seasonal component and is an internal class stored in "Mt".

Slots

- **w**: The period of the seasonality
- **fvect**: An Sx1 "matrix" (S is the number of spatial points of the predicted grid) containing the temporal autoregressive parameter fvect
- **f0L**: A 3x1 "matrix" containing the temporal autoregressive parameter f0L
- **gvect**: A Sx1 "matrix" containing the temporal autoregressive parameter gvect
- **g0L**: A 3x1 "matrix" containing the temporal autoregressive parameter g0L

Methods

- `[signature(x = "Seas", i = "character", j = "missing", drop = "missing")]: extract the components of the model.
- `[<- signature(x = "Seas", i = "character", j = "missing")]: assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: **HBSTM-package**
Classes: **HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,Hyperpriors,Mu0,Mt0,Xt0,**
Methods: **hbstm,hbstm.fit,resultestimation,resid,mse**
Plot: **plotRes,plotFit**
Data: **hirlam,coordinates**
Seas0-class

*Class "Seas0"

Description

"Seas0" contains the hyperprior values of the seasonal component and is an internal class stored in the class "Mt0".

Slots

- `f0L0`: A "vector" of length 3 with the mean hyperprior values of the parameter f0L
- `sigf0L0`: A "matrix" of dimension 3X3 with the hyperprior variance of the parameter f0L
- `g0L0`: A "vector" of length 3 with the mean hyperprior values of the parameter g0L
- `sigg0L0`: A "matrix" of dimension 3X3 with the hyperprior variance of the parameter g0L

Methods

- `[signature(x = "Seas0", i = "character", j = "missing", drop = "missing")]: extract the components of the model.
- `[<- signature(x = "Seas0", i = "character", j = "missing")]: assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: [HBSTM-package](#)
Classes: [HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,Hyperpriors,Mu0,Mt0,Xt0,]
Methods: [hbstm,hbstm.fit,results,estimation,resid,mse]
Plot: [plotRes,plotFit]
Data: [hirlam,coordinates]
Slots

alpha: A "vector" of length: the number of horizontal (east-west) spatial lags. It contains the fitted values of the horizontal spatial parameters.

beta: A "vector" of length: the number of vertical (north-south) spatial lags. It contains the fitted values of the vertical spatial parameters.

phi: A "vector" of length: the number of diagonal (southeast-northwest) spatial lags. It contains the fitted values of the diagonal spatial parameters.

theta: A "vector" of length: the number of inverse-diagonal (southwest-northeast) spatial lags. It contains the fitted values of the inverse-diagonal spatial parameters.

Cmat: An SxS "matrix" (S is the number of spatial points of the predicted grid) containing all the spatial parameters.

lags: A "vector" containing the spatial lags for each direction. Each position of the vector is related to the lags of alpha, beta, phi and theta, respectively.

dirs: A "vector" containing the considered spatial directions of the model.

Methods

[signature(x = "SpatParam", i = "character", j = "missing", drop = "missing"): extract the components of the model.

[<- signature(x = "SpatParam", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,Hyperpriors,Mu0,Mt0,Xt0,
Methods: hbstm,hbstm.fit,results,estimation,resid,mse
Plot: plotRes,plotFit
Data: hirlam,coordinates

SpatParam0-class Class "SpatParam0"

Description

"SpatParam0" contains the hyperprior values of the specified spatial parameters and is an internal class stored in the classes "Mu0" and "Autoregressive0".
VectSubdiag-class

Slots

- **alpha**: A "matrix" of dimension $2 \times (\text{Length of alpha vector})$ with the means in the first row and the variance in the second row.
- **beta**: A "matrix" of dimension $2 \times (\text{Length of beta vector})$ with the means in the first row and the variance in the second row.
- **phi**: A "matrix" of dimension $2 \times (\text{Length of phi vector})$ with the means in the first row and the variance in the second row.
- **theta**: A "matrix" of dimension $2 \times (\text{Length of theta vector})$ with the means in the first row and the variance in the second row.

Methods

- `[signature(x = "SpatParam", i = "character", j = "missing", drop = "missing")`: extract the components of the model.
- `[<- signature(x = "SpatParam", i = "character", j = "missing")`: assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package

Classes: HBSTM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0,

Methods: hbstm, hbstm.fit, results, estimation, resid, mse

Plot: plotRes, plotFit

Data: hirlam, coordinates

Description

"VectSubdiag" contains all the values of the space-time parameters and it is an internal class stored in "Autoregressive".

Slots

- **east**: A "vector" of length: the number of east spatial lags. It contains the fitted values of the east spatial-temporal parameters.
- **west**: A "vector" of length: the number of west spatial lags. It contains the fitted values of the west spatial-temporal parameters.
- **north**: A "vector" of length: the number of north spatial lags. It contains the fitted values of the north spatial-temporal parameters.
south: A "vector" of length: the number of south spatial lags. It contains the fitted values of the south spatial-temporal parameters.

southeast: A "vector" of length: the number of southeast spatial. It and contains the fitted values of the southeast spatial-temporal parameters.

northwest: A "vector" of length: the number of northwest spatial. It and contains the fitted values of the northwest spatial-temporal parameters.

southwest: A "vector" of length: the number of southwest spatial. It and contains the fitted values of the southwest spatial-temporal parameters.

northeast: A "vector" of length: the number of northeast spatial. It and contains the fitted values of the northeast spatial-temporal parameters.

lags: A "vector" containing the spatial lags for each direction. Each position of the vector is related to the lags of east, west, north, south, southeast, northwest, southwest and northeast, respectively.

dirs: A "vector" containing all the space-time directions included in the model.

Methods

[signature(x = "VectSubdiag", i = "character", j = "missing", drop = "missing"): extract the components of the model.

[<- signature(x = "VectSubdiag", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,Hyperpriors,Mu0,Mt0,Xt0,
Methods: hbstm,hbstm.fit,results,estimation,resid,mse
Plot: plotRes,plotFit
Data: hirlam,coordinates

VectSubdiag0-class Class "VectSubdiag0"

Description

"VectSubdiag0" contains the hyperprior values of the specified space-time parameters, and it is an internal class stored in "Autoregressive0"
Slots

eastP: A "matrix" of dimension 2X(Length of vector east) with the means in the first row and the variance in the second row.

westP: A "matrix" of dimension 2X(Length of vector west) with the means in the first row and the variance in the second row.

northP: A "matrix" of dimension 2X(Length of vector north) with the means in the first row and the variance in the second row.

southP: A "matrix" of dimension 2X(Length of vector south) with the means in the first row and the variance in the second row.

southeastP: A "matrix" of dimension 2X(Length of vector southeast) with the means in the first row and the variance in the second row.

northwestP: A "matrix" of dimension 2X(Length of vector northwest) with the means in the first row and the variance in the second row.

southwestP: A "matrix" of dimension 2X(Length of vector southwest) with the means in the first row and the variance in the second row.

northeastP: A "matrix" of dimension 2X(Length of vector northeast) with the means in the first row and the variance in the second row.

Methods

[signature(x = "VectSubdiag0", i = "character", j = "missing", drop = "missing"): extract the components of the model.

[< signature(x = "VectSubdiag0", i = "character", j = "missing"): assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSM-package
Classes: HBSM, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu0, Mt0, Xt0, ...
Methods: hbstm, hbstm.fit, results, estimation, resid, mse
Plot: plotRes, plotFit
Data: hirlam, coordinates
Description

"Xt" contains the parameter values of the autoregressive part and is an internal class stored in "Parameters".

Slots

- **Xt**: A "matrix" of dimension $S \times T$ ($S =$ predicted spatial points and $T =$ temporal points) containing the fitted values of the parameter Xt.
- **X0**: An $S \times 1$ "matrix" containing the auxiliary parameter $X0$.
- **sigma2N**: Contains the fitted value of the variance σ_N.
- **AR**: A "list" of objects of class Autoregressive, one for each temporal lag of the model.
- **templags**: A "vector" containing the temporal lags of the model.

Methods

- `[] signature(x = "Xt", i = "character", j = "missing", drop = "missing")`: extract the components of the model.
- `[] signature(x = "Xt", i = "character", j = "missing")`: assign values to the components of the model.

Author(s)

Pilar Munyoz and Alberto Lopez Moreno

See Also

Overview: HBSTM-package
Classes: HBSTM, Parameters, Parameters, Mu, Mt, Xt, Autoregressive, Seas, SpatParam, VectSubdiag, Hyperpriors, Mu,
Methods: hbstm, hbstm.fit, results, estimation, resid
Plot: plotRes
\textbf{Xt0-class}

\textit{xt0-class} \hspace{1cm} \textit{Class "Xt0"}

\textbf{Description}

"\textit{Xt0}" contains the hyperprior values of the autoregressive part and is an internal class and is stored in "Parameters0"

\textbf{Slots}

- \textit{X0}: A "vector" of length S (S is the number of spatial points of the predicted grid) with the mean hyperprior values of the parameter \textit{X0}
- \textit{sigma2X0}: A "matrix" of dimension SXS with the hyperprior variance of the parameter \textit{X0}
- \textit{AR0}: A "list" of objects of class "Autorregresive0", one for each temporal lag of the model.
- \textit{sigma2N0}: A "vector" of length 2 with the hyperprior values of the parameter sigma2N

\textbf{Methods}

\begin{itemize}
 \item \texttt{[signature(x = "Xt0", i = "character", j = "missing", drop = "missing"): extract the components of the model.}}
 \item \texttt{[<- signature(x = "Xt0", i = "character", j = "missing"): assign values to the components of the model.}}
\end{itemize}

\textbf{Author(s)}

Pilar Munyoz and Alberto Lopez Moreno

\textbf{See Also}

Overview: \texttt{HBSTM-package}
Classes: \texttt{HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,Hyperpriors,Mu0,Mt0,Xt0,}
Methods: \texttt{hbstm,hbstm.fit,results,estimation,resid,mse}
Plot: \texttt{plotRes,plotFit}
Data: \texttt{hirlam,coordinates}
Index

*Topic classes

Autoregressive-class, 4
HBSTM-class, 8
Hyperpriors-class, 11
Mt-class, 12
Mt0-class, 13
Mu-class, 14
Mu0-class, 15
Parameters-class, 16
Seas-class, 20
Seas0-class, 21
SpatParam-class, 21
SpatParam0-class, 22
VectSubdiag-class, 23
VectSubdiag0-class, 24
Xt-class, 26
Xt0-class, 27

*Topic datasets

coordinates, 5
hirlam, 10

[,Autoregressive, character, missing, missing-method
 (Autoregressive-class), 3
[,Autoregressive0, character, missing, missing-method
 (Autoregressive0-class), 4
[,CosSinMatrix, character, missing, missing-method
 (HBSTM-package), 2
[,HBSTM, character, missing, missing-method
 (HBSTM-class), 8
[,Hyperpriors, character, missing, missing-method
 (Hyperpriors-class), 11
[,Mt, character, missing, missing-method
 (Mt-class), 12
[,Mt0, character, missing, missing-method
 (Mt0-class), 13
[,MtAux, character, missing, missing-method
 (HBSTM-package), 2
[,Mu, character, missing, missing-method
 (Mu-class), 14
[,Mu0, character, missing, missing-method
 (Mu0-class), 15
[,Parameters, character, missing, missing-method
 (Parameters-class), 16
[,Seas, character, missing, missing-method
 (Seas-class), 20
[,Seas0, character, missing, missing-method
 (Seas0-class), 21
[,SpatC, character, missing, missing-method
 (HBSTM-package), 2
[,SpatH, character, missing, missing-method
 (HBSTM-package), 2
[,SpatParam, character, missing, missing-method
 (SpatParam-class), 21
[,SpatParam0, character, missing, missing-method
 (SpatParam0-class), 22
[,VectSubdiag, character, missing, missing-method
 (VectSubdiag-class), 23
[,VectSubdiag0, character, missing, missing-method
 (VectSubdiag0-class), 24
[,Xt, character, missing, missing-method
 (Xt-class), 26
[,Xt0, character, missing, missing-method
 (Xt0-class), 27
[<-Autoregressive, character, missing-method
 (Autoregressive-class), 3
[<-Autoregressive0, character, missing-method
 (Autoregressive0-class), 4
[<-CosSinMatrix, character, missing-method
 (HBSTM-package), 2
[<-HBSTM, character, missing-method
 (HBSTM-class), 8
[<-Hyperpriors, character, missing-method
 (Hyperpriors-class), 11
[<-Mt, character, missing-method
 (Mt-class), 12
[<-Mt0, character, missing-method
 (Mt0-class), 13
[<-MtAux, character, missing-method
 (HBSTM-package), 2
[<-Mu, character, missing-method
 (Mu-class), 14
[<-Mu0, character, missing-method
 (Mu0-class), 15
[<-Parameters, character, missing-method
 (Parameters-class), 16
[<-Seas, character, missing-method
 (Seas-class), 20
[<-Seas0, character, missing-method
 (Seas0-class), 21
[<-SpatC, character, missing-method
 (HBSTM-package), 2
[<-SpatH, character, missing-method
 (HBSTM-package), 2
[<-SpatParam, character, missing-method
 (SpatParam-class), 21
[<-SpatParam0, character, missing-method
 (SpatParam0-class), 22
[<-VectSubdiag, character, missing-method
 (VectSubdiag-class), 23
[<-VectSubdiag0, character, missing-method
 (VectSubdiag0-class), 24
[<-Xt, character, missing-method
 (Xt-class), 26
[<-Xt0, character, missing-method
 (Xt0-class), 27
<!Autoregressive, character
 (Autoregressive-class), 3
<!Autoregressive0, character
 (Autoregressive0-class), 4
<!CosSinMatrix, character
 (HBSTM-package), 2
<!HBSTM, character
 (HBSTM-class), 8
<!Hyperpriors, character
 (Hyperpriors-class), 11
<!Mt, character
 (Mt-class), 12
<!Mt0, character
 (Mt0-class), 13
<!MtAux, character
 (HBSTM-package), 2
<!Mu, character
 (Mu-class), 14
<!Mu0, character
 (Mu0-class), 15
<!Parameters, character
 (Parameters-class), 16
<!Seas, character
 (Seas-class), 20
<!Seas0, character
 (Seas0-class), 21
<!SpatC, character
 (HBSTM-package), 2
<!SpatH, character
 (HBSTM-package), 2
<!SpatParam, character
 (SpatParam-class), 21
<!SpatParam0, character
 (SpatParam0-class), 22
<!VectSubdiag, character
 (VectSubdiag-class), 23
<!VectSubdiag0, character
 (VectSubdiag0-class), 24
<!Xt, character
 (Xt-class), 26
<!Xt0, character
 (Xt0-class), 27
[\text{<-}, \text{Mu}, \text{character}, \text{missing-method (Mu-class)}, 14
[\text{<-}, \text{Mu0}, \text{character}, \text{missing-method (Mu0-class)}, 15
[\text{<-}, \text{Parameters}, \text{character}, \text{missing-method (Parameters-class)}, 16
[\text{<-}, \text{Seas}, \text{character}, \text{missing-method (Seas-class)}, 20
[\text{<-}, \text{Seas0}, \text{character}, \text{missing-method (Seas0-class)}, 21
[\text{<-}, \text{SpatC}, \text{character}, \text{missing-method (HBSTM-package)}, 2
[\text{<-}, \text{SpatH}, \text{character}, \text{missing-method (HBSTM-package)}, 2
[\text{<-}, \text{SpatParam}, \text{character}, \text{missing-method (SpatParam-class)}, 21
[\text{<-}, \text{SpatParam0}, \text{character}, \text{missing-method (SpatParam0-class)}, 22
[\text{<-}, \text{VectSubdiag}, \text{character}, \text{missing-method (VectSubdiag-class)}, 23
[\text{<-}, \text{VectSubdiag0}, \text{character}, \text{missing-method (VectSubdiag0-class)}, 24
[\text{<-}, \text{Xt}, \text{character}, \text{missing-method (Xt-class)}, 26
[\text{<-}, \text{Xt0}, \text{character}, \text{missing-method (Xt0-class)}, 27

Autoregressive, 2–4, 6, 7, 9–27
Autoregressive-class, 3
Autoregressive0, 2–4, 6, 7, 9–27
Autoregressive0-class, 4

coordinates, 3, 4, 5, 6, 7, 9–25, 27

estimation, 3, 4, 5, 6, 7, 9–27
estimation, HBSTM-method (estimation), 5
estimation-methods (estimation), 5

HBSTM, 2–4, 6, 7, 9–27
HBSTM (HBSTM-package), 2
hbstm, 3, 4, 6, 6, 7, 9–27
hbstm.data.frame, matrix, data.frame, vector, vector, vector, ANY, ANY, ANY, ANY, logical-method (hbstm), 6
HBSTM-class, 8
hbstm-methods (hbstm), 6
HBSTM-package, 2
hbstm.fit, 3, 4, 6, 7, 9, 10–27
hbstm.fit, HBSTM-method (hbstm.fit), 9
hbstm.fit-methods (hbstm.fit), 9

hirlam, 3, 4, 6, 7, 9, 10, 10, 11–25, 27
Hyperpriors, 2–4, 6, 7, 9–27
Hyperpriors-class, 11

mse, 3, 4, 6, 7, 9–12, 12, 13–25, 27
mse, HBSTM-method (mse), 12
mse-methods (mse), 12
mse.HBSTM (mse), 12
Mt, 2–4, 6, 7, 9–27
Mt-class, 12
Mt0, 2–4, 6, 7, 9–27
Mt0-class, 13
Mu, 2–4, 6, 7, 9–27
Mu-class, 14
Mu0, 2–4, 6, 7, 9–27
Mu0-class, 15

Parameters, 2–4, 6, 7, 9–27
Parameters-class, 16
plotFit, 3, 4, 6, 7, 9–17, 17, 18–25, 27
plotFit, HBSTM-method (plotFit), 17
plotFit-methods (plotFit), 17
plotRes, 3, 4, 6, 7, 9–18, 18, 19–27
plotRes, HBSTM-method (plotRes), 18
plotRes-methods (plotRes), 18

resid, 3, 4, 6, 7, 9–27
results, 3, 4, 6, 7, 9–19, 19, 20–27
results, HBSTM-method (results), 19
results-methods (results), 19

Seas, 2–4, 6, 7, 9–27
Seas-class, 20
Seas0, 2–4, 6, 7, 9–27
Seas0-class, 21
SpatParam, 2–4, 6, 7, 9–27
SpatParam-class, 21
SpatParam0, 2–4, 6, 7, 9–27
SpatParam0-class, 22

VectSubdiag, 2–4, 6, 7, 9–27
VectSubdiag-class, 23
VectSubdiag0, 2–4, 6, 7, 9–27
VectSubdiag0-class, 24

Xt, 2–4, 6, 7, 9–27
Xt-class, 26
Xt0, 2–4, 6, 7, 9–27
Xt0-class, 27