Package ‘MixedTS’

February 19, 2015

Type Package
Title Mixed Tempered Stable Distribution
Version 1.0.1
Date 2014-28-11
Depends methods, stats4, MASS
Author Lorenzo Mercuri, Edit Rroji
Maintainer Lorenzo Mercuri <lorenzo.mercuri@unimi.it>
Description This package provides detailed functions for univariate Mixed Tempered Stable distribution with Gamma density. This distribution encompasses, Variance Gamma and Symmetric Geo-Stable as special cases. The package contains routine for mle estimation, for the computation of density, probability, quantile and random numbers
License GPL (>= 2)
Repository CRAN
Repository/R-Forge/Project mixedts
Repository/R-Forge/Revision 11
Repository/R-Forge/DateTimeStamp 2014-08-03 17:55:34
Date/Publication 2014-08-04 08:15:17
NeedsCompilation no

R topics documented:

MixedTS-package .. 2
dMixedTS-methods ... 2
MixedTS-class .. 3
MixedTS.qmle-class .. 5
mle.MixedTS .. 6
param.MixedTS-class ... 7
pMixedTS-methods ... 8
qMixedTS-methods .. 9
rMixedTS-methods ... 9
setMixedTS.param .. 10

Index 13
MixedTS-package

Mixed Tempered Stable Distribution

Description

This package provides detailed functions for univariate Mixed Tempered Stable distribution distribution with Gamma density. This distribution encompasses, Variance Gamma and Symmetric Geo-Stable as special cases. The package contains routine for mle estimation, for the computation of density, probability, quantile and random numbers.

Details

Package: MixedTS
Type: Package
License: GPL (>= 2)

Author(s)

Lorenzo Mercuri, Edit Rroji

Maintainer: Lorenzo Mercuri <lorenzo.mercuri@unimi.it>

References

dMixedTS-methods

Density of Mixed Tempered Stable distribution

Description

This Method returns the density of a Mixed Tempered Stable
Methods

signature(object = "param.MixedTS", x = numeric(), setSup=NULL, setInf=NULL, N=2^10)

This method returns an object of class MixedTS where the slot dens contains the value of the density evaluated on the x. setSup and setInf are used to choose + infinity and - infinity. N is the number of point used for discretization in fft algorithm.

Examples

First Example

Density of MixedTS with Gamma

ParamEx1<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=1.5, alpha=0.8, lambda_p=4, lambda_m=1, Mixing="Gamma")

support

x<-seq(-3,1,length=100)

dens1<-dMixedTS(x=x,object=ParamEx1,setSup=10,setInf=-10,N=2^7)

plot(dens1)

Density of MixedTS with IG

Mix<="User"

logmgf<-("lamb/mu1*(1-sqrt(1-2*mu1^2/lamb*mu))")

parMix<-list(lamb=1, mu1=1)

ParamEx2<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=logmgf, alpha=0.8, lambda_p=4, lambda_m=1, Mixing=Mix, paramMixing=parMix)

x<-seq(-3,1,length=100)

dens2<-dMixedTS(x=x,object=ParamEx2,setSup=10,setInf=-10,N=2^7)

plot(dens2)
Description

Mathematical description of the Mixed Tempered Stable distribution.
This class inherits from the class param.MixedTS and is a superclass for MixedTS.qmle-class.

Objects from the Class

This object is built by the following methods:
dMixedTS, pMixedTS, qMixedTS, rMixedTS.

Slots

Data: Object of class "numeric" containing a random number. This slot is filled when the method rMixedTS is used.
dens: Object of class "numeric" that contains the density of the MixedTS. This slot is filled by dMixedTS.
prob: Object of class "numeric" that contains the probability of the MixedTS. This slot is filled by pMixedTS and pMixedTS.
xMixedTS: Object of class "numeric" that contains the support for the density and probability.
quantile: Object of class "logical". If TRUE the object is built by the method qMixedTS. If FALSE the object is built by the method qMixedTS.
mu0: Object of class "numeric". See param.MixedTS.
mu: Object of class "numeric". See param.MixedTS.
sigma: Object of class "numeric". See param.MixedTS.
a: Object of class "vector". See param.MixedTS.
alpha: Object of class "numeric". See param.MixedTS.
lambda_p: Object of class "numeric". See param.MixedTS.
lambda_m: Object of class "numeric". See param.MixedTS.
Mixing: Object of class "character". See param.MixedTS.
paramMixing: Object of class "list". See param.MixedTS.
MixingLogMGF: Object of class "OptionalFunction". See param.MixedTS.

Extends

Class "param.MixedTS", directly.

Methods

plot signature(x = "MixedTS", ...)

Description

This class is constructed by function MixedTS.qmle. It is a subclass for the MixedTS-class.

Objects from the Class

Objects can be created by function MixedTS.qmle.

Slots

time: Object of class "numeric". Computational Time.
coef: Object of class "numeric". Estimated parameters.
vcov: Object of class "matrix". Approximate variance-covariance matrix.
min: Object of class "numeric". Minimum value of objective function.
details: Object of class "list". A list as returned from constrOptim
nobs: Object of class "integer". Number of observation.
method: Object of class "character". The optimization method used.
Data: Object of class "numeric". See MixedTS-class.
dens: Object of class "numeric". See MixedTS-class.
prob: Object of class "numeric". See MixedTS-class.
xMixedTS: Object of class "numeric". See MixedTS-class.
quantile: Object of class "logical". See MixedTS-class.
mu0: Object of class "numeric". See MixedTS-class.
mu: Object of class "numeric". See MixedTS-class.
sigma: Object of class "numeric". See MixedTS-class.
a: Object of class "vector". See MixedTS-class.
alpha: Object of class "numeric". See MixedTS-class.
lambda_p: Object of class "numeric". See MixedTS-class.
lambda_m: Object of class "numeric". See MixedTS-class.
Mixing: Object of class "character". See MixedTS-class.
paramMixing: Object of class "list". See MixedTS-class.
MixingLogMGF: Object of class "OptionalFunction". See MixedTS-class.

Extends

Methods

summary signature(.Object = "MixedTS.qmle")
coef signature(.Object = "MixedTS.qmle")
vcov signature(.Object = "MixedTS.qmle")
logLik signature(.Object = "MixedTS.qmle")
BIC signature(.Object = "MixedTS.qmle")
AIC signature(.Object = "MixedTS.qmle")

mle.MixedTS

Maximum Likelihood Estimation for MixedTS distribution

Description

Estimate MixedTS parameters using the Maximum Likelihood Estimation procedure.

Usage

```r
mle.MixedTS(object, start = list(), Data = NULL,
             method = "L-BFGS-B", fixed.param = NULL,
             lower.param = NULL, upper.param = NULL,
             setSup = NULL, setInf = NULL, N = 2^10)
```

Arguments

- **object**: an object of class param.MixedTS that contains informations about the model.
- **start**: a list of parameter for the mle.
- **Data**: a numeric object containing the dataset.
- **method**: methods for optimization routine. See **optim** for more details.
- **fixed.param**: a list of the model parameter that must be fix during optimization routine. Choosing alpha=2 the function returns the estimate parameters for the Normal Variance Mean Mixture distribution.
- **lower.param**: a list containing the lower bound for the parameters.
- **upper.param**: a list containing the upper bound for the parameters.
- **setSup**: Internal parameter. see documentation for dMixedTS for more details.
- **setInf**: Internal parameter. see documentation for dMixedTS for more details.
- **N**: Internal parameter. see documentation for dMixedTS for more details.

Value

The function returns an object of class MixedTS.qmle.
Examples

First Example:
We define the Mixed Tempered Stable using the function setMixedTS.param

ParamEx1<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=1.5, alpha=0.8, lambda_p=4, lambda_m=1, Mixing="Gamma")

We generate a sample using the rmixedts method
set.seed(100)
Rand1 <- rmixedts(x=5000, object=ParamEx1, setSup=10, setInf=-10, N=2^9)

Estimate procedure
Not run:
est1<-mle.MixedTS(object=Rand1, setSup=10, setInf=-10, N=2^9)
Show results

summary(est1)

End(Not run)

param.MixedTS-class

"param.MixedTS": A mathematical Description of the Mixed Tempered Stable

Description

Main class of the package MixedTS.

Objects from the Class

Objects can be created by calls of the form setMixedTS.

Slots

- **mu0**: a numeric object. mu0 parameter belongs to the real axis.
- **mu**: a numeric object. mu parameter belongs to the real axis.
- **sigma**: a numeric object. sigma parameter assumes value from zero to infinity.
- **a**: a vector object. If numeric, the mixing density V is a Gamma and a is the value of the shape parameter. If string, a is the log of the moment generating function of the mixing density V.
- **alpha**: a numeric object that takes value from 0 to 2. If alpha is fixed to 2, the Mixed Tempered Stable becomes the Normal Variance Mean mixture.
- **lambda_p**: a positive numeric object. It is the right tempering parameter of the random variable X.
- **lambda_m**: a positive numeric object. It is the left tempering parameter of the random variable X.
Mixing a string object indicating the nature of the mixing density \(V \). If Mixing="Gamma" (default value), the \(V \) random variable is a Gamma. If Mixing="Gamma", the user have to specify the log of the moment generating function of the \(V \) random variable.

paramMixing a list object. It is an empty list when Mixing="Gamma". If Mixing="User", it is used to pass the values of the Mixing density parameters defined by the User through slot \(a \).

MixingLogMGF: This slot contains a function that returns the logarithm of mgf for the Mixing density. The function is built internally using the information contains into the slots \(a \), paramMixing.

Methods

\[\text{qMixedTS} \] signature(object = "param.MixedTS"): Method for computing quantile of MixedTS. See "qMixedTS-methods" for more details.

\[\text{rMixedTS} \] signature(object = "param.MixedTS"): Method for computing random numbers of MixedTS. See "rMixedTS-methods" for more details.

initialize signature(object = "param.MixedTS").

Probability of Mixed Tempered Stable distribution

Description

This Method returns the cdf of a Mixed Tempered Stable

Methods

signature(object = "param.MixedTS", x = numeric(), setSup=NULL, setInf=NULL, N=2^10)

This method returns an object of class MixedTS where the slot prob contains the value of the probability evaluated on the \(x \). setSup and setInf are used to choose + infinity and - infinty. \(N \) is the number of point used for discretization in fft algorithm.

Examples

First Example

Density of MixedTS with Gamma

ParamEx1<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=1.5,
 alpha=0.8, lambda_p=4, lambda_m=1,
 Mixing="Gamma")

support

x<-seq(-3,1,length=100)
qMixedTS-methods

Quantile of Mixed Tempered Stable distribution

Description

This Method returns the quantile of a Mixed Tempered Stable.

Methods

```r
signature(object = "param.MixedTS", x = numeric(), setSup=NULL, setInf=NULL, N=2^10)
```

This method returns an object of class MixedTS where the slot prob contains the value of the quantile evaluated on the x (x is the probability). setSup and setInf are used to choose + infinity and - infinity. N is the number of point used for discretization in fft algorithm.

rMixedTS-methods

Random number of Mixed Tempered Stable distribution

Description

This Method returns the quantile of a Mixed Tempered Stable.
Methods

signature(object = "param.MixedTS", x = numeric(), setSup=NULL, setInf=NULL, N=2*10)

This method returns an object of class MixedTS where the slot Data contains a set of size x of random numbers. setSup and setInf are used to choose + infinity and - infinity. N is the number of point used for discretization in fft algorithm.

Description

setMixedTS describes the Mixed Tempered Stable distribution introduced in Rroji and Mercuri (2014):

Definition

We say that a continuous random variable Y follows a Mixed Tempered Stable distribution if:

\[Y = \mu_0 + \mu V + \sigma \sqrt{V} Z \]

The conditional distribution of random variable given \(V=v \) is a standardized Tempered Stable with parameters \((\alpha, \lambda_p \sqrt{v}, \lambda_m) \) (see Kuchler, U. and Tappe, S. 2014). The distribution of \(V \) is infinitely divisible defined on the positive axis.

Usage

setMixedTS.param(mu0 = numeric(), mu = numeric(),
 sigma = numeric(), a, alpha = numeric(),
 lambda_p = numeric(), lambda_m = numeric(),
 param = numeric(), Mixing = "Gamma", paramMixing = list())

Arguments

- **mu0**: a numeric object. \(\mu_0 \) parameter belongs to the real axis.
- **mu**: a numeric object. \(\mu \) parameter belongs to the real axis.
- **sigma**: a numeric object. \(\sigma \) parameter assumes value from zero to infinity.
- **a**: a vector object. If numeric, the mixing density \(V \) is a Gamma and \(a \) is the value of the shape parameter. If string, \(a \) is the log of the moment generating function of the mixing density \(V \).
- **alpha**: a numeric object that takes value from 0 to 2. If alpha is fixed to 2, the Mixed Tempered Stable becomes the Normal Variance Mean mixture.
- **lambda_p**: a positive numeric object. It is the right tempering parameter of the random variable \(x \).
- **lambda_m**: a positive numeric object. It is the left tempering parameter of the random variable \(x \).
- **param**: a numeric object containing the Mixed Tempered Stable parameters. It is not necessary if we use the previous inputs for defining the distribution. See documentation for more details.
setMixedTS.param

Mixing a string object indicating the nature of the mixing density \(V \). If Mixing="Gamma" (default value), the \(V \) random variable is a Gamma. If Mixing="Gamma", the user have to specify the log of the moment generating function of the \(V \) random variable.

paramMixing a list object. It is an empty list when Mixing="Gamma". If Mixing="User", it is used to pass the values of the Mixing density parameters defined by the User through slot a.

Details

For particular choices of the tempering parameters the tails of the MixedTS distribution can be heavy or semi-heavy. In particular if the Mixing density is a Gamma, we get the Variance Gamma (Madan and Seneta 1990) and the symmetric Geo-Stable distribution as special cases.

Value

This function returns an object of class "param.MixedTS".

Note

This class of distributions has the Normal Variance Mean Mixture (Barndorff-Nielsen et al. 1982) as special case.

References

Examples

Mixed Tempered Stable with Gamma Mixing density.

```r
ParamEx1<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=1.5,
                                   alpha=0.8, lambda_p=4, lambda_m=1)
```

Mixed Tempered Stable with Inverse Gaussian Mixing density.

```r
logmgf<-("lamb/muil*(1-sqrt(1-2*mu1^2/lamb^u))")
Mix<-"User"
```
The parameters of the mixing density are set by the following command
line:

parMix<-list(lamb=1, mu1=1)

ParamEx2<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=logmgf,
 alpha=0.8, lambda_p=4, lambda_m=1,
 Mixing=Mix, paramMixing=parMix)
Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dMixedTS (dMixedTS-methods)</td>
<td>2</td>
</tr>
<tr>
<td>dMixedTS.param.MixedTS-method (dMixedTS-methods)</td>
<td>2</td>
</tr>
<tr>
<td>dMixedTS-methods</td>
<td>2</td>
</tr>
<tr>
<td>initialize, MixedTS-method (MixedTS-class)</td>
<td>3</td>
</tr>
<tr>
<td>initialize, MixedTS.qmle-method (MixedTS.qmle-class)</td>
<td>5</td>
</tr>
<tr>
<td>Mixed Tempered Stable distribution (mle.MixedTS)</td>
<td>6</td>
</tr>
<tr>
<td>MixedTS, 5</td>
<td></td>
</tr>
<tr>
<td>MixedTS (MixedTS-package), 2</td>
<td></td>
</tr>
<tr>
<td>MixedTS-class, 3</td>
<td></td>
</tr>
<tr>
<td>MixedTS-package, 2</td>
<td></td>
</tr>
<tr>
<td>MixedTS-parameters (setMixedTS.param) (setMixedTS.param)</td>
<td>10</td>
</tr>
<tr>
<td>MixedTS.qmle-class, 5</td>
<td></td>
</tr>
<tr>
<td>mle (mle.MixedTS), 6</td>
<td></td>
</tr>
<tr>
<td>mle.MixedTS, 6</td>
<td></td>
</tr>
<tr>
<td>Normal Variance Mean Mixture (mle.MixedTS), 6</td>
<td></td>
</tr>
<tr>
<td>param.MixedTS, 4, 5, 11</td>
<td></td>
</tr>
<tr>
<td>param.MixedTS (param.MixedTS-class), 7</td>
<td></td>
</tr>
<tr>
<td>param.MixedTS-class, 7</td>
<td></td>
</tr>
<tr>
<td>plot, MixedTS, ANY-method (MixedTS-class), 3</td>
<td></td>
</tr>
<tr>
<td>pMixedTS (pMixedTS-methods), 8</td>
<td></td>
</tr>
<tr>
<td>pMixedTS, param.MixedTS-method (pMixedTS-methods), 8</td>
<td></td>
</tr>
<tr>
<td>pMixedTS-methods, 8</td>
<td></td>
</tr>
<tr>
<td>qMixedTS (qMixedTS-methods), 9</td>
<td></td>
</tr>
<tr>
<td>qMixedTS, param.MixedTS-method (qMixedTS-methods), 9</td>
<td></td>
</tr>
<tr>
<td>qMixedTS-methods, 9</td>
<td></td>
</tr>
<tr>
<td>rMixedTS (rMixedTS-methods), 9</td>
<td></td>
</tr>
</tbody>
</table>