Package ‘SIMMS’

August 29, 2013

Version 0.0.1
Type Package
Title Subnetwork Integration for Multi-Modal Signatures
Date 2013-06-11
Author Syed Haider, Michal Grzadkowski, Paul C. Boutros
Maintainer Syed Haider <Syed.Haider@oicr.on.ca>
Depends R (>= 2.14.0), survival (>= 2.36-2), MASS (>= 7.3-12)
Description Algorithms to create prognostic biomarkers using biological networks
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2013-06-11 18:09:24

R topics documented:

SIMMS-package .. 2
calculate.meta.survival 4
calculate.network.coefficients 5
calculate.sensitivity.stats 6
create.KM.plot .. 7
create.sensitivity.plot 8
create.survivalplots .. 9
create.survobj .. 10
derive.network.features 11
dichotomize.dataset .. 12
dichotomize.meta.dataset 13
SIMMS-package

Description

Algorithms to create prognostic biomarkers using biological networks

Details

Package: SIMMS
Type: Package
Version: 0.0.1
Date: 2012-06-11
License: GPL-2
LazyLoad: yes

Author(s)

Syed Haider, Michal Grzadkowski & Paul C. Boutros

Examples

options("warn" = -1);

get data directory
data.directory <- get.program.defaults(networks.database = "test")[["test.data.dir"]];

initialise params
output.directory <- ".";
data.types <- c("mRNA");
feature.selection.datasets <- c("Breastdata1");
training.datasets <- c("Breastdata1");
validation.datasets <- c("Breastdata2");
feature.selection.p.thresholds <- c(0.5);
feature.selection.p.threshold <- 0.5;
top.n.features <- 5;

compute network HRs for all the subnet features
derive.network.features(
 data.directory = data.directory,
 output.directory = output.directory,
 data.types = data.types,
 feature.selection.datasets = feature.selection.datasets,
 feature.selection.p.thresholds = feature.selection.p.thresholds,
 networks.database = "test"
);

preparing training and validation datasets.
Normalisation & patientwise subnet feature scores
prepare.training.validation.datasets(
 data.directory = data.directory,
 output.directory = output.directory,
 data.types = data.types,
 feature.selection.datasets = feature.selection.datasets,
 datasets = unique(c(training.datasets, validation.datasets)),
 networks.database = "test"
);

fit survival model (feature selection using forward selection & backward elimination)
fit.survivalmodel(
 data.directory = data.directory,
 output.directory = output.directory,
 feature.selection.datasets = feature.selection.datasets,
 feature.selection.p.threshold = feature.selection.p.threshold,
 training.datasets = training.datasets,
 top.n.features = top.n.features
);

predict patient risk scores/groups using the betas generated by the fit
pred.survivalmodel(
 data.directory = data.directory,
 output.directory = output.directory,
 feature.selection.datasets = feature.selection.datasets,
 feature.selection.p.threshold = feature.selection.p.threshold,
 training.datasets = training.datasets,
 validation.datasets = validation.datasets,
 top.n.features = top.n.features
);

(optional) plot Kaplan-meier survival curves and perform sensitivity analysis
if (FALSE){
 create.survivalplots(
 data.directory = data.directory,
 output.directory = output.directory,
 training.datasets = training.datasets,
)
}
calculate.meta.survival

Fit a meta-analytic Cox proportional hazards model to a single feature

Description

Takes a meta-analysis data object and fits a Cox proportional hazards model (possibly with adjustment for some specific covariates) by median-dichotomizing patients within each individual dataset.

Usage

calculate.meta.survival(
 feature.name, expression.data, survival.data, rounding = 3, other.data = NULL
);

Arguments

feature.name Character indicate what feature (gene/probe/etc.) should be extracted for analysis
expression.data A list where each component is an expression matrix (patients = columns, genes = rows) for a different dataset
survival.data A list where each component is an object of class Surv
rounding How many digits after the decimal place to include
other.data A list of other covariates to be passed to the Cox model (all elements in this list are used)

Value

Returns a vector containing the HR, p-value, n, and 95% confidence limits of the HR (see fit.coxmodel() for details)

Author(s)

Paul C. Boutros
Examples

data.directory <- get.program.defaults()["test.data.dir"];
data.types <- c("mRNA");
x1 <- load.cancer.datasets(
 datasets.to.load = c('Breastdata1'),
 data.types = data.types,
 data.directory = data.directory
);
x2 <- calculate.meta.survival(
 feature.name = "1000_at",
 expression.data = x1$all.data[[data.types[1]]],
 survival.data = x1$all.survobj
);

calculate.network.coefficients

Calculate Cox statistics for input dataset

Description

Function to compute hazard ratios for the genes in pathway-derived networks, by aggregating input datasets into one training cohort. The hazard ratios are computed for each pair by calculating the HR of each gene independently and as an interaction (i.e. $y = HR(A) + HR(B) + HR(A:B)$)

Usage

calculate.network.coefficients(
 data.directory = ".", output.directory = ".",
 training.datasets = NULL, data.types = c("mRNA"),
 subnets.file.flattened = NULL, subset = NULL
);

Arguments

data.directory Path to the directory containing datasets as specified by training.datasets
output.directory Path to the output folder where intermediate and results files will be saved
training.datasets A vector containing names of training datasets
data.types A vector of molecular datatypes to load. Defaults to c('mRNA')
subnets.file.flattened File containing all the binary interactions derived from pathway-derived networks
subset A list with a Field and Entry component specifying a subset of patients to be selected whose annotation Field matches Entry
calculate.sensitivity.stats

Computes sensitivity measures

Description

Computes sensitivity measures: TP, FP, TN, FN, Sensitivity, Specificity, Accuracy

Usage

calculate.sensitivity.stats(all.data = NULL);

Arguments

all.data A data matrix containing predicted and real risk groups

Value

A vector containing TP, FP, TN, FN, Sensitivity, Specificity, Accuracy

Author(s)

Syed Haider
create.KM.plot

Plots Kaplan-meier survival curve for a given risk grouping & survival params

Description

A generic method to plot KM curves

Usage

```r
create.KM.plot(
  riskgroup = NULL, survtime = NULL, survstat = NULL,
  truncate.survival = 100, file.name = NULL, main.title = "",
  resolution = 100
);
```

Arguments

- `riskgroup`: A vector containing dichotomized risk groups
- `survtime`: A vector containing survival time of the samples
- `survstat`: A vector containing survival status of the samples
- `truncate.survival`: A numeric value specifying survival truncation in years. Defaults to 100 years which effectively means no truncation
- `file.name`: A string containing full qualified path of the output tiff file
- `main.title`: A string specifying main title of the image
- `resolution`: A numeric value specifying resolution of the tiff image of KM survival curves. Defaults to 100

Value

The KM survival curves are stored under `output.dir/graphs/`

Author(s)

Syed Haider
create.sensitivity.plot

Plots sensitivity analysis for class label dichotomization at supplied survtime cutoffs

Description

A method to computer sensitivity, specificity and accuracy at all the survtime cutoff steps provided

Usage

create.sensitivity.plot(
 riskscore = NULL, riskgroup = NULL, survtime = NULL, survstat = NULL,
 survtime.cutoffs = c(seq(5,10,1)), output.directory = ".", file.stem = NULL,
 main.title = "", resolution = 100
);

Arguments

riskscore A vector containing predicted risk scores
riskgroup A vector containing dichotomized risk groups
survtime A vector containing survival time of the samples
survstat A vector containing survival status of the samples
survtime.cutoffs A vector containing cutoff time points used to dichotomize patients into low- and high-risk groups
output.directory Path to the output folder where intermediate and results files will be saved
file.stem A string containing base name for image and text files produced by this method
main.title A string specifying main title of the image
resolution A numeric value specifying resolution of the tiff image of KM survival curves. Defaults to 100

Value

The sensitivity analysis plots are stored under output.directory/graphs/. The sensitivity analysis results are stored under output.directory/output/

Author(s)

Syed Haider
create.survivalplots

Plots Kaplan-meier survival curves

Description

Plots Kaplan-meier survival curves for all the training & datasets, independently as well as combined training datasets cohort and validation datasets cohort. The function also plots KM survival curves for each of the top.n.features independently.

Usage

create.survivalplots(
 data.directory = "." , output.directory = "." , training.datasets = NULL,
 validation.datasets = NULL, top.n.features = 25, truncate.survival = 100,
 survtime.cutoffs = c(seq(5,10,1)), main.title = FALSE,
 KM.plotting.fun = "create.KM.plot", resolution = 100
);

Arguments

data.directory Path to the directory containing datasets as specified by training.datasets, validation.datasets
output.directory Path to the output folder where intermediate and results files were saved
training.datasets A vector containing names of training datasets
validation.datasets A vector containing names of validation datasets
top.n.features A numeric value specifying how many top ranked features will be used for univariate survival modelling
truncate.survival A numeric value specifying survival truncation in years. Defaults to 100 years which effectively means no truncation
survtime.cutoffs A vector containing survival cutoff time points to be used for dichotomization of patients into risk groups for sensitivity analysis
main.title A logical to specify plot’s main title. Defaults to FALSE
KM.plotting.fun A string containing the name of the method to use for plotting KM curves. Defaults to create.KM.plot
resolution A numeric value specifying resolution of the tiff images of KM survival curves. Defaults to 100

Value

The KM survival curves are stored under output.directory/graphs/
create.survobj

Utility function for loading meta-analysis lists

Description

Create Surv objects from an annotation-matrix with handling for different time units.

Usage

create.survobj(annotation);

Arguments

annotation A patient annotation matrix (patients = rows) with (at least) columns for surv-time, survstat, and survtime.unit

Value

Returns an object of class Surv

Author(s)

Paul C. Boutros

Examples

annotation.file <- paste(
 get.program.defaults()[["test.data.dir"]],
 "/Breastdata2/patient_annotation.txt", sep = ""
);
annotation <- read.table(
 annotation.file,
 header = TRUE,
 row.names = 1,
 sep = "\t"
);

select the appropriate survtime and survstat variable for this dataset
annotation$survstat <- annotation[, 'e.dfs'];
annotation$survtime <- annotation[, 't.dfs'];
annotation$survtime.unit <- annotation[, 't.dfs.unit'];
only keep samples with survival data
annotation <- annotation[!is.na(annotation$survstat) & !is.na(annotation$survstat),];
surv.obj <- create.survobj(annotation = annotation);

derive.network.features

Derive univariate features from pathway-derived networks

Description

This function fits Cox model to features as well as interaction between features. The coefficients of features are subsequently used to compute impact score of each of the pathway-derived networks.

Usage

```r
derive.network.features(
  data.directory = ".", output.directory = ".",
  data.types = c("mRNA"), feature.selection.fun = "calculate.network.coefficients",
  feature.selection.datasets = NULL,
  feature.selection.p.thresholds = c(0.05), subset = NULL,
  networks.database = "default", ...
);
```

Arguments

- `data.directory`: Path to the directory containing datasets as specified by `feature.selection.datasets`
- `output.directory`: Path to the output folder where intermediate and results files will be saved
- `data.types`: A vector of molecular datatypes to load. Defaults to c(`'mRNA'`)
- `feature.selection.fun`: Name of the function to be used to estimate network coefficients. Defaults to `calculate.network.coefficients`
- `feature.selection.datasets`: A vector containing names of training datasets to be used to compute cox statistics
- `feature.selection.p.thresholds`: A vector containing P values to be used as threshold for including features into overall impact score of a network
- `networks.database`: Name of the pathway networks database. Default to NCI PID/Reactome/Biocarta i-e "default"
- `subset`: A list with a Field and Entry component specifying a subset of patients to be selected from each dataset whose annotation Field matches Entry
- `...`: other params to be passed on to user-defined method for estimating coefficients of network features
dichotomize.dataset

Value

The output files are stored under `data.directory/output/`

Author(s)

Syed Haider

Examples

```r
options("warn" = -1);

# get data directory
data.directory <- get.program.defaults(networks.database = "test")[["test.data.dir"]];

# initialise params
output.directory <- ".";
data.types <- c("mRNA");
feature.selection.datasets <- c("Breastdata1");
feature.selection.p.thresholds <- c(0.05);

# estimate network coefficients for all the subnet features
derive.network.features(
  data.directory = data.directory,
  output.directory = output.directory,
  data.types = data.types,
  feature.selection.fun = "calculate.network.coefficients",
  feature.selection.datasets = feature.selection.datasets,
  feature.selection.p.thresholds = feature.selection.p.thresholds,
  networks.database = "test" );
```

dichotomize.dataset Dichotomize a single dataset

Description

Split a dataset into two groups by median-dichotomization

Usage

```r
dichotomize.dataset(x, split.at = NA);
```

Arguments

- **x**: A vector of values to be dichotomized
- **split.at**: An optional value that can be used to dichotomize instead of median
dichotomize.meta.dataset

Value

A vector of the data dichotomized onto a 0/1 (low/high) scale.

Author(s)

Syed Haider & Paul C. Boutros

Examples

```r
tmp <- data.frame(y = rnorm(100));
tmp$x <- dichotomize.dataset(tmp$y);
```

dichotomize.meta.dataset

Dichotomize and unlist a meta-analysis list

Description

Takes a meta-analysis list (and possibly extra data) and median dichotomizes based on a specific gene, then returns the unlisted data to the caller.

Usage

```r
dichotomize.meta.dataset(
  feature.name, expression.data, 
  survival.data, other.data = NULL 
);
```

Arguments

- `feature.name`: Character indicating what feature (gene/probe/etc.) should be extracted for analysis
- `expression.data`: A list where each component is an expression matrix (patients = columns, genes = rows) for a different dataset
- `survival.data`: A list where each component is an object of class Surv
- `other.data`: A list of other covariates to be unlisted in the final output (all elements in this list are used)

Details

NB: other.data handling of missing components (i.e. those present in only some datasets) has not been debugged (but may work regardless).
Value

Returns a list containing components groups (the median dichotomization), survtime (in the units of the input data), and survstat. Additional vectors are unlisted from other.data if that parameter is not NULL.

Author(s)

Paul C. Boutros

Examples

data.directory <- get.program.defaults()["test.data.dir"]["test.data.dir"]; data.types <- c("mRNA"); x1 <- load.cancer.datasets(datasets.to.load = c('Breastdata1'), data.types = data.types, data.directory = data.directory); x2 <- dichotomize.meta.dataset(feature.name = "1000_at", expression.data = x1$all.data[[data.types[1]]], survival.data = x1$all.survobj);

fit.coxmodel
Fit a Cox proportional hazards model

Description

Fit a Cox model (possibly with some linear adjustments) and return key statistics about the fit.

Usage

fit.coxmodel(
 groups, survobj, stages = NA,
 rounding = 3, other.data = NULL
);

Arguments

groups Grouping of patients (passed directly to coxph, so factors & continuous variables are okay)
survobj An object of class Surv (from the survival package) – patient ordering needs to be identical as for groups
stages DEPRECATED! Use other.data instead.
rounding How many digits of precision should be returned?
other.data A data-frame (or matrix?) of variables to be controlled in the Cox model. If null, no adjustment is done. No interactions are fit.
Value

A vector containing: HR, lower 95% CI of HR, upper 95% CI of HR, P-value (for groups), number of samples (total with group assignments, although some may not be included in fit for other reasons so this is an upper-limit).

Author(s)

Paul C. Boutros

Examples

```r
survtime <- sample(seq(0.1,10,0.1), 100, replace = TRUE);
survstat <- sample(c(0,1), 100, replace = TRUE);
survobj <- Surv(survtime, survstat);
groups <- sample(c('A','B'), 100, replace = TRUE);
fit.coxmodel(
  groups = as.factor(groups),
  survobj = survobj
);
```

Description

Using a meta-analysis dataset take two features and Cox model them separately and together and extract HRs and p-values.

Usage

```r
fit.interaction.model(
  feature1, feature2,
  expression.data, survival.data
);
```

Arguments

- `feature1` String indicate what feature (gene/probe/etc.) should be extracted for analysis
- `feature2` String indicate what feature (gene/probe/etc.) should be extracted for analysis
- `expression.data` A list where each component is an expression matrix (patients = columns, features = rows) for a different dataset
- `survival.data` A list where each component is an object of class Surv
fit.survivalmodel

Details

The interaction model compares cases where feature1 and feature2 concord (both high or both low) to those where they do not. That is, the model is $y = x_1 + x_2 + (x_1 == x_2)$ and not the typical $y = x_1 + x_2 + x_1:x_2$

Value

Returns a vector of six elements containing (HR,P) pairs for feature1, feature2, and the interaction

Author(s)

Paul C. Boutros

Examples

data.dir <- get.program.defaults()["test.data.dir"];
data.types <- c("mRNA");
x1 <- load.cancer.datasets(dataset.to.load = c('Breastdata1'), data.types = data.types, data.directory = data.dir);
x2 <- fit.interaction.model(feature1 = "1000.at", feature2 = "2549_at", expression.data = x1$all.data[[data.types[1]]], survival.data = x1$all.survobj);

fit.survivalmodel Trains a multivariate survival model

Description

Trains a multivariate survival model and conducts feature selection using both backward elimination and forward selection, independently.

Usage

fit.survivalmodel(data.directory = ".", output.directory = ".", feature.selection.datasets = NULL, feature.selection.p.threshold = 0.05, training.datasets = NULL, top.n.features = 25, models = c("1", "2", "3"));
get.adjacency.matrix

Arguments

data.directory Path to the directory containing datasets as specified by feature.selection.datasets, training.datasets
output.directory Path to the output folder where intermediate and results files will be saved
feature.selection.datasets A vector containing names of datasets used for feature selection in function derive.network.features()
feature.selection.p.threshold One of the P values that were used for feature selection in function derive.network.features(). This function does not support vector of P values as used in derive.network.features() for performance reasons
training.datasets A vector containing names of training datasets to be used to train multivariate survival model
top.n.features A numeric value specifying how many top ranked features will be used to train the multivariate survival model
models A character vector specifying which models ('1' = N+E, '2' = N, '3' = E) to run

Value

The output files are stored under output.directory/output/

Author(s)

Syed Haider

Examples

see package's main documentation

gt.adjacency.matrix

A utility function to convert tab delimited networks file into adjacency matrices

Description

A utility function to convert tab-delimited networks file into adjacency matrices

Usage

gt.adjacency.matrix(subnets.file = NULL);
get.chisq.stats

Arguments

subnets.file A tab-delimited file containing networks. New networks start with a new line with '#’ at the begining of network name and subsequent lines contain a binary interaction per line

Value

A list of adjacency matrices

Author(s)

Syed Haider

Examples

subnets.file <- get.program.defaults()[["subnets.file"]];
all.adjacency.matrices <- get.adjacency.matrix(subnets.file);

get.chisq.stats Applies survdiff function

Description

Applies survdiff on different prognoses groups and computes Logrank P using chisquare statistics.

Usage

get.chisq.stats(groups, survobj);

Arguments

groups Grouping of patients (passed directly to survdiff, so factors & continuous variables are okay)
survobj An object of class Surv (from the survival package) – patient ordering needs to be identical as for groups

Value

A vector containing: Chisq, degrees of freedom (DOF) and Logrank P-value.

Author(s)

Syed Haider
Description

A utility function to return the inst/ directory of the installed package to get the test datasets and other program related data contents

Usage

```r
get.program.defaults(networks.database = "default");
```

Arguments

- `networks.database`

 Name of the pathway networks database. Default to NCI PID/Reactome/Biocarta i-e "default"

Value

Returns path to the directory where the contents of this package are installed and names of other input files

Author(s)

Syed Haider

Examples

```r
program.data <- get.program.defaults();
```
load.cancer.datasets

Load all cancer meta-analysis datasets

Description

Returns a list of lists containing all cancer meta-analysis datasets

Usage

load.cancer.datasets(
 tumour.only = TRUE, with.survival.only = TRUE,
 datasets.to.load = 'all', data.types = c('mRNA'),
 datasets.file = 'datasets.txt', data.directory = '.',
 verbose = FALSE, subset = NULL
);

Arguments

tumour.only Logical indicating if we should only load tumour samples (TRUE, the default)
with.survival.only Logical indicating if we should only load samples with survival data (TRUE, the default)
datasets.to.load A vector of datasets to be loaded. If 'all', then all available datasets are loaded
data.types A vector of molecular datatypes to load. Defaults to c('mRNA')
datasets.file A file in data.directory containing a listing of all usable datasets
data.directory A directory containing all data-files to be loaded
verbose Logical indicating whether or not status messages should be given
subset A list with a Field and Entry component specifying a subset of patients to be selected whose annotation Field matches Entry

Value

Returns a meta-analysis list of lists

Author(s)

Paul C. Boutros

Examples

data.dir <- get.program.defaults()["test.data.dir"];
x1 <- load.cancer.datasets(
 datasets.to.load = c('Breastdata1'),
 data.types = c('mRNA'),
 data.directory = data.dir
);
make.matrix

Utility function used by get.adjacency.matrix()

Description

Utility function used by get.adjacency.matrix()

Usage

make.matrix(vertices, interactions);

Arguments

vertices Comma separated list of nodes
interactions Comma separated list of edges

Value

Returns adjacency matrix

Author(s)

Syed Haider

Examples

x1 <- make.matrix("a,b,c", "a:b,b:c");

pred.survivalmodel

Trains a multivariate survival model

Description

Predicts the risk score for all the training & datasets, independently. This function predicts the
risk score for combined training datasets cohort and validation datasets cohort. The risk score
computation is done for multivariate models fit by fit.survivalmodel. The function also predicts
risk scores for each of the top.n.features independently.

Usage

pred.survivalmodel(
 data.directory = ".", output.directory = ".",
 feature.selection.datasets = NULL, feature.selection.p.threshold = 0.05,
 training.datasets = NULL, validation.datasets = NULL,
 top.n.features = 25, models = c("1", "2", "3"),
 truncate.survival = 0, write.risk.data = TRUE
);
Arguments

data.directory Path to the directory containing datasets as specified by feature.selection.datasets, training.datasets, validation.datasets

output.directory Path to the output folder where intermediate and results files will be saved

feature.selection.datasets A vector containing names of datasets used for feature selection in function derive.network.features()

feature.selection.p.threshold One of the P values that were used for feature selection in function derive.network.features(). This function does not support vector of P values as used in derive.network.features() for performance reasons

training.datasets A vector containing names of training datasets

validation.datasets A vector containing names of validation datasets

top.n.features A numeric value specifying how many top ranked features will be used for univariate survival modelling

models A character vector specifying which of the models ('1' = N+E, '2' = N, '3' = E) to run

truncate.survival A numeric value specifying survival truncation in years. Defaults to 100 years which effectively means no truncation

write.risk.data A toggle to control whether risk scores and patient risk groups should be written to file

Value

The output files are stored under output.directory/output/

Author(s)

Syed Haider

Examples

see package's main documentation
prepare.training.validation.datasets

Prepare training and validation datasets

Description

Computes per-patient pathway-derived network impact scores across all input datasets, independently

Usage

prepare.training.validation.datasets(
 data.directory = ".", output.directory = ".",
 data.types = c("mRNA"), feature.selection.datasets = NULL,
 datasets = NULL, networks.database = "default",
 write.normed.datasets = TRUE, subset = NULL
);

Arguments

data.directory Path to the directory containing datasets as specified by datasets
output.directory Path to the output folder where intermediate and results files will be saved
data.types A vector of molecular datatypes to load. Defaults to c('mRNA')
feature.selection.datasets A vector containing names of datasets used for feature selection in function derive.network.features()
datasets A vector containing names of all the datasets to be later used for training and validation purposes
networks.database Name of the pathway networks database. Default to NCI PID/Reactome/Biocarta i-e "default"
write.normed.datasets A toggle to control whether processed mRNA and survival data should be written to file
subset A list with a Field and Entry component specifying a subset of patients to be selected whose annotation Field matches Entry

Value

The output files are stored under output.directory/output/

Author(s)

Syed Haider
Examples

get data directory
data.directory <- get.program.defaults()[["test.data.dir"]];

initialise params
output.directory <- ".";
data.types <- c("mRNA");
feature.selection.datasets <- c("Breastdata1");
training.datasets <- c("Breastdata1");
validation.datasets <- c("Breastdata1", "Breastdata2");

preparing training and validation datasets.
Normalisation & patientwise subnet feature scores
prepare.training.validation.datasets(
data.directory = data.directory,
output.directory = output.directory,
data.types = data.types,
feature.selection.datasets = feature.selection.datasets,
datasets = unique(c(training.datasets, validation.datasets)),
networks.database = "test"
);
Index

*Topic **FeatureSelection**
 derive.network.features, 11

*Topic **IO**
 get.program.defaults, 19
 load.cancer.datasets, 20
 prepare.training.validation.datasets, 23

*Topic **Networks**
 get.adjacency.matrix, 17
 make.matrix, 21

*Topic **Sensitivity, Specificity**
 calculate.sensitivity.stats, 6

*Topic **package**
 SIMMS-package, 2

*Topic **survival, Kaplan-meier**
 create.KM.plot, 7
 create.survivalplots, 9

*Topic **survival, sensitivity, specificity, accuracy**
 create.sensitivity.plot, 8

*Topic **survival**
 calculate.meta.survival, 4
 calculate.network.coefficients, 5
 create.survobj, 10
 dichotomize.dataset, 12
 dichotomize.meta.dataset, 13
 fit.coxmodel, 14
 fit.interaction.model, 15
 fit.survivalmodel, 16
 get.chisq.stats, 18
 get.program.defaults, 19
 load.cancer.datasets, 20
 make.matrix, 21
 pred.survivalmodel, 21
 prepare.training.validation.datasets, 23
 SIMMS (SIMMS-package), 2
 SIMMS-package, 2

derive.network.features, 11
dichotomize.dataset, 12
dichotomize.meta.dataset, 13
fit.coxmodel, 14
fit.interaction.model, 15
fit.survivalmodel, 16
get.adjacency.matrix, 17
get.chisq.stats, 18
get.program.defaults, 19
load.cancer.datasets, 20
make.matrix, 21
pred.survivalmodel, 21
prepare.training.validation.datasets, 23
SIMMS (SIMMS-package), 2
SIMMS-package, 2