Package ‘cSFM’

January 23, 2014

Type Package
Title Covariate-adjusted Skewed Functional Model (cSFM)
Version 1.1
Date 2014-01-20
Author Meng Li, Ana-Maria Staicu, and Howard D. Bondell
Maintainer Meng Li <mli9@ncsu.edu>
Depends R (>= 2.15.3), sn
Imports mgcv, mnormt, MASS, moments, splines
LazyLoad yes
Description
cSFM is a method to model skewed functional data when considering covariates via a copula-based approach.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2014-01-23 16:49:05

R topics documented:

cSFM-package ... 2
case2.b.initial ... 3
cp.beta ... 4
cSFM.object .. 5
cSFM.est ... 6
cSFM.est.parallel ... 8
D.SN ... 10
Data Simulation .. 12
Description

This package provides functions for functional data analysis, when covariate effect is present and high-moment information is considered. Skewed normal distributions are used for the pointwise distributions, and the dependence is modeled by a Gaussian copula.

Details

The main function `csfmNest` applies one of the proposed method `csFM` and its variates `Rcsfm` and `csfmP` to the observed data. The generic functions `print`, `fitted` and `predict` are applicable for summarizing the output, obtaining fitted values (including quantile estimation) and predicting at new data point. See `data.simulation` for an example of the simulated data where various methods including `csFM` and other variates can be applied to. Kronecker product basis is exploited for bivariate parameter functions. The smoothness is controlled by the number of knots which is selected by minimizing AIC; the function `csfmNestNparallel` allows parallel computing for various combinations of knots when the facility is available to the users.

References

See Also

`csFM.est, csFM.est.parallel, data.simulation.`
Initial Estimates of Parameter Functions

Description

Obtain the initial estimates of functional parameters (mean, var, shape and skewness) when both the mean and variance are covariate dependent but the skewness is covariate independent.

Usage

case2.b.initial(y, tp, cp, nbasis.mean = 10, gam.method = "REML", bin = 10, skew.method = "mle", cate = 1)

Arguments

- `y` observed data matrix
- `tp` timepoint vector with length = ncol(y)
- `cp` covariate vector with length = nrow(y)
- `nbasis.mean` number of bases when smoothing the mean
- `gam.method` smoothing method for the mean
- `bin` the length of bin to estimate the variance
- `skew.method` estimation method for skewness; See 'Details'
- `cate` method category, taking values as 1, 2, 3; See 'Details'

Details

The variance is estimated using binning method with length = bin. The skewness can be estimated by method of moment mome or maximum likelihood mle. Stepwise estimates are used here: the variance is based on the residuals after removing the mean effect; the skewness is based on the scaled residuals after removing both the mean and variance effect.

cate indicates the method category as follows:

- `cate = 1` all three parameter functions are to be estimated
- `cate = 2` the skewness parameter is fixed as 0
- `cate = 3` the mean to be fixed at 0; typically used when a stepwise estimation procedure is used, e.g. 2cSFM in cSFM.est

Value

A list of initial estimate of parameters (length 4: mean, variance, shape and skewness).

See Also

cSFM.est
Examples

```r
data(data.simulation)
## Not run:
cp.hat <- case2.b.initial(y = DST$obs, tp = DST$tp, cp = DST$cp)
# visualize the parameter function and the estimated function
par(mfrow = c(1, 2))
persp(DST$cp, DST$tp, exp(DST$pars$logvar), theta = 60, phi = 15,
ticktype = "detailed", col = "lightblue",
xlab = "covariate", ylab = "time",
zlab="data", main="variance surface")
persp(DST$cp, DST$tp, cp.hat$var, theta = 60, phi = 15,
ticktype = "detailed", col = "lightblue",
xlab = "covariate", ylab = "time",
main="initial estimates")

## End(Not run)
```

cp.beta

Transformation between Parameters and B-spline Coefficients

Description

Given a B-spline basis, transfer parameters (mean, variance, skewness) to the corresponding coefficients, and vice versa.

Usage

```r
cp2beta(cp.list, Basis.list)
beta2cp(vec.beta, Basis.list)
```

Arguments

- `cp.list` list of parameters with names to be (mean, var, skew) corresponding to (mean, variance, skew)
- `Basis.list` list of basis matrices for the mean, variance and skewness
- `vec.beta` vector of coefficients

Value

`cp2beta` returns a vector of coefficients with the same form of `vec.beta`; `beta2cp` returns a list of parameters with the same form of `cp.list`

References

cSFM object

Examples

data(data.simulation)
bivariate for mean and variance; univariate for shape parameter
cases = c(2,2,1)
2 knots at time direction for each parameter
nknots.tp = c(2,2,2)
2 knots at covariate direction for mean and variance
nknots.cp = c(2,2)
basis.list <- lapply(1:3, function(k)
 kpbb(DSTtp, DSTcp, nknots.tp = nknots.tp[k],
 nknots.cp = nknots.cp[k], sub.case=cases[k]))
cp.hat <- DST$parms # true parameters
cp.hat$var <- exp(cp.hat$logvar) # follow the format strictly: (mean, var, skew)
beta <- cp2beta(cp.hat, basis.list)
cp.recover <- beta2cp(beta, basis.list)
norm(cp.hat$mean - cp.recover$mean)

Description

Print, extract fitted values and predict for cSFM object.

Methods of the generic function print, fitted and predict for objects inheriting from class cSFM.

Usage

S3 method for class 'cSFM'
print(x, ...)
S3 method for class 'cSFM'
fitted(object, quantile = TRUE,
 quantile.level = c(0.5, 0.8, 0.9, 0.95, 0.99), ...)
S3 method for class 'cSFM'
predict(object, newdata, cp.valid, tp.valid = NULL, ...)

Arguments

x A cSFM object; returned by the function cSFM.est
object A cSFM object; returned by the function cSFM.est
quantile logical; if TRUE(default), estimates of quantiles are returned
quantile.level quantile vector; quantile levels to be estimated when quantile = TRUE
newdata the partially observed new data set (missing data allowed) to be predicted
cp.valid observed covariate vector for newdata with length nrow(newdata)
tp.valid observed timepoint vector for newdata with length ncol(newdata); See "Details".
... other arguments passed to the generic functions
Details

When use the function `predict`, each row of `newdata` corresponds to covariate information `cp.valid`, while the column is for the time points `tp.valid`. When `tp.valid` is null, then we assume the validation data set has the same time points as the training data set, which is used to obtain `object`.

See Also

cSFM.est, print, fitted, predict

cSFM.est
Model Estimation with Bivariate Regression B-Splines

Description

Function used for model estimation with bivariate (or univariate) B-splines, when the number of knots are given for each parameters (mean, variance and skewness). Kronecker product is used for bivariate case. It returns cSFM objects.

Usage

```r
csfm.est(data, tp, cp, nknots.tp, nknots.cp, degree.poly = c(3, 3, 3),
          method = c("cSFM", "cSFM0", "2cSFM"), bi.level = 2,
          nbasis.mean = 10, gam.method = "REML")
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>The fully observed data matrix $n \times m$. The number of row n is the number of subjects; the number of columns m is the number of time points for each subject.</td>
</tr>
<tr>
<td><code>tp</code></td>
<td>The timepoint vector of length m, shared by each subject</td>
</tr>
<tr>
<td><code>cp</code></td>
<td>The covariate vector of length n corresponding to n subjects</td>
</tr>
<tr>
<td><code>nknots.tp</code></td>
<td>The vector (k_1,k_2,k_3) for the number of knots (mean, variance, skewness) in the time direction</td>
</tr>
<tr>
<td><code>nknots.cp</code></td>
<td>The vector (s_1,s_2,s_3) for the number of knots (mean, variance, skewness) in the covariant direction; the effective length is <code>bi.level</code>. For example, if <code>bi.level = 2</code>, only the first two numbers (s_1,s_2) are used</td>
</tr>
<tr>
<td><code>degree.poly</code></td>
<td>The vector (d_1,d_2,d_3) for the degree of B-splines (mean, variance, skewness) in both the time and covariant direction; the cubic splines are the default splines.</td>
</tr>
<tr>
<td><code>method</code></td>
<td>Estimation method for the model. See 'Details'.</td>
</tr>
<tr>
<td><code>bi.level</code></td>
<td>Bivariate level taking values at 0, 1, 2, 3. See 'Details'.</td>
</tr>
<tr>
<td><code>nbasis.mean</code></td>
<td>Number of basis functions to smooth the mean; only applicable when method is "2cSFM".</td>
</tr>
<tr>
<td><code>gam.method</code></td>
<td>Method to smooth the mean; only applicable when method is "2cSFM".</td>
</tr>
</tbody>
</table>
Details

The three methods for the argument method are all based on skewed normal and copula, but exploits different approaches to conduct the estimation. Method "cSFM" assumes the full model and estimate all the parameter functions (mean, variance, skewness) jointly; Method "cSFM0" enforces the skewness to be zero, and estimate the other two parameter functions jointly; Method "2cSFM" first estimate the mean function via penalized bivariate spline and then estimate the variance and skewness for the residuals, thus it is a Stepwise approach.

The argument bi.level indicates the bivariate dependence for all three parameters. For example, Bi.level = 2 means the parameters are bivariate up to the 2nd moment, i.e. the mean and variance are bivariate while the skewness is univariate.

Value

A cSFM object as a list with components:

- beta.hat: Estimated coefficients
- cp.hat: Estimated parameter functions including the mean, variance and skewness
- copula: Estimated copula for the data
- corr.est: Estimated correlation matrix for the copula
- AIC: AIC for the model
- num.pars: Number of parameters in the model
- logL1: Marginal loglikelihood value
- logL2: Loglikelihood value for the copula
- sm.basis: Smoothing Matrices used as the basis
- gam.mean: Results when smoothing the mean, returned by gam function and is only applicable for method 2cSFM

References

See Also

- print.cSFM, predict.cSFM, fitted.cSFM, gam, data.simulation

Examples

data(data.simulation) # load benchmark data
y <- DST$obs # matrix of observation
tp <- DST$tp; cp <- DST$cp

fixed number of knots
bivariate for mean and variance, univivariate for shape
nknots.tp <- c(2,2,2)
nknots.cp <- c(2,2)
Not run:

```r
fit.cSFMe <- cSFMe(y, tp, cp, nknots.tp, nknots.cp, method = "cSFMe")
fit.cSFMe # print out the results briefly
# fitted mean, logvar and skewness; fitted quantiles
fitted.value <- fitted(fit.cSFMe)

# visualize the parameter function and the estimated function
par(mfrow = c(1,2))
persp(DST$cp, DST$tp, DST$pars$mean, theta=60, phi=15,
    ticktype = "detailed", col="lightblue",
    xlab = "covariate", ylab = "time",
    zlab="data", main="parameter surface")
persp(DST$cp, DST$tp, fit.cSFMe$cp$hat$mean, theta=60, phi=15,
    ticktype = "detailed", col="lightblue",
    xlab = "covariate", ylab = "time",
    zlab="data", main="estimated surface via 'cSFMe' method")

# predication for missing data
y.valid <- DSV$obs # matrix of training data; include missing values
tp.valid <- DSV$tp; cp.valid <- DSV$cp
# predication for training data
yhat.predict <- predict(fit.cSFMe, y.valid, cp.valid, tp.valid)

# visualize the data and predicted surface
par(mfrow = c(1,2))
persp(DSV$cp, DSV$tp, y.valid, theta=60, phi=15,
    ticktype = "detailed", col="lightblue",
    xlab = "covariate", ylab = "time",
    zlab="data", main="data surface (partially observed)")
persp(DSV$cp, DSV$tp, yhat.predict, theta=60, phi=15,
    ticktype = "detailed", col="lightblue",
    xlab = "covariate", ylab = "time",
    zlab="data", main="predicted surface via 'cSFMe' method")

# predication error
mean(((yhat.predict - DSV$obs.full)[!is.na(DSV$obs)]^2)

## End(Not run)
```

cSFMe.est.parallel

Knots Selection by AIC

Description

Select the best number of knots to minimize AIC. This is a convinient function to implement cSFMe for different combination of knots by allowing parallel computing.
Usage

cSFM.est.parallel(data, tp, cp, nknots.tp = NULL, nknots.cp = NULL,
max.knots = NULL, parallel = TRUE, num.core = NULL,
method = c("cSFM", "cSFM0", "2cSFM"), bi.level = 2,
degree.poly = c(3, 3, 3), nbasis.mean = 10, gam.method = "REML")

Arguments

data The fully observed data matrix n by m. The number of row n is the number
of subjects; the number of columns m is the number of time points for each
subject.

 tp The timepoint vector of length m, shared by each subject

 cp The covariate vector of length n corresponding to n subjects

 nknots.tp knots matrix with each row to be a vector (k1,k2,k3) for the number of knots
(mean, variance, skewness) in the time direction

 nknots.cp knots matrix with each row to be a vector (s1,s2,s3) for the number of knots
(mean, variance, skewness) in the covariant direction; the effective length is
bi.level. For example, if bi.level = 2, only the first two numbers (s1, s2)
are used

 max.knots the maximum number of knots to be considered; nknots.tp and nknots.cp
are not used if max.knots is provided; See "Details"

 parallel logical indicator; whether parallel computing will be used or not

 num.core number of cores to be used when parallel = TRUE; default to be the total
available cores

 method Estimation method for the model. See cSFM.est

 bi.level Bivariate level taking values at 0, 1, 2, 3. See cSFM.est.

 degree.poly The vector (d1,d2,d3) for the degree of B-splines (mean, variance, skewness) in
both the time and covariant direction; the cubic splines are the default splines.

 nbasis.mean Number of basis functions to smooth the mean; only applicable when method is
"2cSFM".

 gam.method Method to smooth the mean; only applicable when method is "2cSFM".

Details

This function is mainly based on cSFM.est, except that different sets of knots are considered here.
The parallel computing is based on the package parallel.

When supplied, max.knots will determine (knots.tp, knots.cp) as follows. For each di-
rection (time and covariate) and each parameter (mean, variance and skewness), the number of
knots is from 1 to max.knots; we enforce the lower moments have more knots than higher mo-
ments (for example, mean has more knots than variance), therefore delete those exceptions to give
(knots.tp, knots.cp).
Value

best.cSFM cSFM object with the minimal AIC value; see \texttt{cSFM.est} for a complete explanation of HAC object
knots.mat matrix for knots to be considered; each row is a vector with length 6: first three are knots for time direction, while the last three are knots for covariate direction
AIC AIC vector for all sets of knots

Note

This function is the parallel version of \texttt{cSFM.est}. The major difference is that this function allows for a pool of knots combination and apply the parallel computing to save time. Most of the arguments are the same between the two functions.

See Also

\texttt{cSFM.est, clusterMap}

Examples

```r
## Not run:
data(data.simulation)
# Example 1: use the convinient default to generate knots
ret <- cSFM.est.parallel(DST$obs, DST$tp, DST$cp, max.knots = 4)
# AIC vector
ret$AIC
# best number of knots
ret$knots.mat[which.min(ret$AIC), ]
# Example 2: assign combinations of knots subjectively
nknots.tp = rbind(c(3,2,1), c(6,5,4))
nknots.cp = nknots.tp
ret2 <- cSFM.est.parallel(DST$obs, DST$tp, DST$cp,
                         nknots.tp = nknots.tp, nknots.cp = nknots.cp)
```

End(Not run)

Derivatives of Normalized Skewed Normal Parameterized by Shape

Description

Calculate the derivatives of Skewed Normal density with location = 0 and scale = 1 when parameterized by shape parameter. The probability density function (pdf) is a bivariate function, wrt. \(y \) and \(a \). The first and second derivatives are calculated.

Usage

\[D.SN(y, a) \]
Arguments

- `y`: vector or matrix of quantiles, taking values in the real line; Missing values (NA’s) and Inf’s are allowed.
- `a`: vector or matrix of shape parameters, taking values in the real line; should have the same dimension as `y`.

Details

In general, a skewed normal is parameterized by three parameters (location, scale, shape). It is referred as normalized skewed normal distribution in some cases when location = 0 and scale = 1. A normalized skewed normal distribution with location = 0 and scale = 1 has the density

\[f(x, a) = 2\phi(x)\Phi(x \ast a), \]

where `a` is the shape parameter; here \(\phi \) is the pdf of the standard normal distribution, and \(\Phi \) is the corresponding cdf. The function `D.SN(x, a)` calculates the function value of \(f(x, a) \), along with the first and second order derivatives.

Value

A list with the following components:

- `sn`: function value of \(f(x, a) \)
- `sn1`: the first derivative \(f'(x, a) \) wrt. \(x \)
- `sn11`: the second derivative \(f''(x, a) \) wrt. \(x \)
- `sn12`: the cross-partial \(f''(x, a) \) wrt. \(x \) and \(a \)
- `sn2`: the first derivative \(f'(x, a) \) wrt. \(a \)
- `sn22`: the second derivative \(f''(x, a) \) wrt. \(a \)

References

[2]. A very brief introduction to the skew-normal distribution

See Also

`skewness.cp, shape.dp, dsn`

Examples

```r
ret1 <- D.SN(0.1, 10)  # y = 0.1, a = 10
ret2 <- D.SN(-0.1, -10) # y = -0.1, a = 10
ret3 <- D.SN(rnorm(10), rnorm(10))  # y and a are a vector
# y and a are matrices
ret4 <- D.SN(matrix(rnorm(10), 2, 5), matrix(rnorm(10), 2, 5))
```
Data Simulation

Generate Data using Skewed Pointwise Distributions and Gaussian copulas

Description

Generate function data with skewed pointwise distributions using a Gaussian copula. The Gaussian copula is generated by a eigen-decomposition with the eigenfunction specified by a basis system. This function can be used for simulation to check the performance of various approaches.

Usage

```r
data.generator.y.F(n.subject, n.timepoints, s, D, csi, lambdas, 
basis.system=legendre.polynomials, var.noise=0.10)
```

Arguments

- `n.subject` number of subjects in the data denoted by \(n \)
- `n.timepoints` number of timepoints, which are equally spaced in \([0,1]\) and denoted by \(m \)
- `s` vector with length \(m \) or matrix with dimension \(m \) by \(n \) for the mean parameter; See "Details"
- `D` vector with length \(m \) or matrix with dimension \(m \) by \(n \) for the log variance parameter; See "Details"
- `csi` vector with length \(m \) or matrix with dimension \(m \) by \(n \) for the shape parameter; See "Details"
- `lambdas` vector of eigenvalue for the latent Gaussian process
- `basis.system` basis system for the latent Gaussian process; `legendre.polynomials` uses the Legendre polynomials and `DFT.basis` uses Fourier basis.
- `var.noise` variance of white noises to corrupte the latent Gaussian Process

Details

The generated data is determined by both the marginal distributions and dependence structure. The marginal distributions require three parameters (mean, variance, shape), which corresponds to \((s, D, csi)\). Each of them can be a vector or a matrix, indicating the distributions to be covariate independent (univariate) or covariant dependent (bivariate). When the parameter is a vector, it must have the length of \(n.timepoints \).

The latent Gaussian process with 0 mean and unit variance is determined by a correlation matrix. The correlation is given by `lambdas`, `basis.system`, which specify the eigenvalues and eigenfunctions correspondingly. We allow measurement error for the considered Gaussian process, to be corrupted by independent Gaussian noises with mean 0 and variance `var.noise`.
Data Simulation

Value

A list with two components:

data: generated data as a matrix with dimension m by n
corr.true: correlation matrix of the latent Gaussian process (Gaussian copula is used)

Note

When the shape parameter is equal to 0, then the generated data is a regular functional data with covariate-adjusted mean and variances and Gaussian errors.

References

Examples

```r
### generate the data set
set.seed(2013)
n.sub <- 100  # number of subjects
n.tim <- 80   # number of timepoints
# true population-level functions (mean, standard deviation and shape)
true.fun <- function(par){
  if (par == "mean") f =function(x,y) sin(pi*x) * cos(pi*y)
  if (par == "logvar"){
    f =function(x,y) 2*dnorm(x, mean=0.5, sd = 0.2, log=TRUE) +
    2*dnorm(y, mean=0.5, sd = 0.2, log =TRUE) - 8
  }
  if (par == "shape") f =function(x,y) 10*sin(2*pi*y)
  return(f)
}
# covariate: Sort at the very beginning
point.cov <- sort(runif(n.sub));
# timepoints
point.tim <- seq(from=0, to=1, length=n.tim);
# calculate and collect all the true population-level parameters
col.true <- list(mean = outer(point.cov, point.tim, true.fun("mean")),
                 logvar = outer(point.cov, point.tim, true.fun("logvar")),
                 shape = outer(point.cov, point.tim, true.fun("shape")))

# generate data
my.data <- data.generator.y.F(n.subject = n.sub, n.timepoints = n.tim,
                            s = col.true$mean, D = col.true$logvar,
                            csi=col.true$shape,
                            lambdas = c(1/2, 1/4, 1/8),
                            basis.system = legendre.polynomials,
                            var.noise = 0.10)
# here shape is covariate independent
# so it's sufficient to keep 1st row of shape to use csi = col.true$shape[1,]
```
Visualize the data

```{r}
par(mfrow = c(2,2))

# plot the data surface
persp(point$cov, point$tim, my$data$data, theta=60, phi=15,
      ticktype = "detailed", col="lightblue",
      xlab = "covariate", ylab = "time",
      zlab="data", main="data surface")

# plot the mean surface
persp(point$cov, point$tim, col.true$mean, theta=45, phi=15,
      ticktype = "detailed", col="lightblue",
      xlab = "covariate", ylab = "time",
      zlab="mean", main="mean surface")

# the logvar surface
persp(point$cov, point$tim, col.true$logvar, theta=45, phi=15,
      ticktype = "detailed", col="lightblue",
      xlab = "covariate", ylab = "time",
      zlab="logvar", main="logvar surface")

# the shape surface
persp(point$cov, point$tim, col.true$shape, theta=45, phi=15,
      ticktype = "detailed", col="lightblue",
      xlab = "covariate", ylab = "time",
      zlab="shape", main="shape surface")
```

DFT.basis

Discrete Fourier Transformation (DFT) Basis System

Description

Generate an orthogonal Fourier basis system in the interval \([0, 1]\). The set of basis functions are used to be the eigenfunctions to generate the covariance matrix of a latent process.

Usage

```r
DFT.basis(t, degree = 0, normalized = TRUE)
```

Arguments

- **t**: the set of values to be evaluated, taking values from \([0, 1]\)
- **degree**: the degree of Fourier basis functions, taking values as 0, 1, 2, ..., See 'Details'
- **normalized**: logical value; If TRUE (default) then the values are normalized such that the \(L2\) norm of the function values is 1

Details

The Fourier basis functions considered here are

\[1, \sqrt{2}\cos(2\pi t), \sqrt{2}\sin(2\pi t), \sqrt{2}\cos(4\pi t), \sqrt{2}\sin(4\pi t), \ldots, \]

which corresponding to degree = 0, 1, 2, 3, 4, ..., Typically the degree is even.
kpbb

Value

A vector which are the evaluations of the Fourier basis function at t.

See Also

legendre.polynomials

Examples

time points
t <- seq(from = 0, to = 1, length = 100)
basis matrix evaluated at the time points t
an intercept column is included
Phi <- cbind(DFT.basis(t, degree = 0), DFT.basis(t, degree = 1),
 DFT.basis(t, degree = 2))
check the orthogonality
crossprod(Phi) # is equal to I_3 up to rounding errors
plot the basis system
matplot(t, Phi, type = "l", lwd = 2, lty = 1:3,
ylab = "basis function", main = "Fourier Basis (normalized)"
legend("top", c("degree = 0", "degree = 1", "degree = 2"),
col = 1:3, lwd = 2, lty = 1:3)

kpbb

Kronecker Product B spline Basis

Description

Generate the B-spline basis matrix for a polynomial spline, applicable for both univariate basis and bivariate basis systems.

Usage

kpbb(tp, cp = NULL, nknots.tp, nknots.cp = NULL,
 sub.case = 2, degree.poly = 3)

Arguments

tp timepoint vector in the time direction; must be sorted

cp covariate vector in the covariate direction; must be sorted

nknots.tp number of knots for the time direction; See 'Details'
nknots.cp number of knots for the covariate direction; See 'Details'
sub.case indicator for univariate (sub.case = 1) or bivariate (sub.case = 2)
degree.poly degree of polynomials for B-spline basis system; default is 3, i.e. cubis splines
Details

kpbb is built based on the function bs. For the time direction, the generated basis matrix has the dimension length(tp) by nknots.tp + degree.poly + 1, regardless whether the number of knots is negative or not. When sub.case = 2, the generated basis matrix is the kronecker product of the two basis matrices.

Value

A basis matrix, with attributes which are for the future use of predict.kpbb.

References

See Also

bs, predict.kpbb, data.simulation

Examples

data(data.simulation) # load benchmark data
y <- DST$obs # matrix of observation
generate bivariate basis using 3 knots for each direction
basis <- kpbb(DSTtp, DSTcp, nknots.tp = 3, nknots.cp = 3)
linear regression
lm.fit <- lm(as.vector(y) ~ basis - 1)
y.fit <- matrix(fitted(lm.fit), nrow = 100, ncol = 80)

visualize the data and fitted surface
par(mfrow = c(1,2))
persp(DSTcp, DSTtp, y, theta=60, phi=15,
 ticktype = "detailed", col="lightblue",
 xlab = "covariate", ylab = "time",
 zlab="data", main="data surface")
persp(DSTcp, DSTtp, y.fit, theta=60, phi=15,
 ticktype = "detailed", col="lightblue",
 xlab = "covariate", ylab = "time",
 zlab="data", main="fitted surface via lm")

legendre.polynomials Orthogonal Legendre Polynomials Basis System

Description

Generate Legendre polynomials as an orthogonal basis system in the interval [0, 1]. The set of polynomial functions are used to be the eigenfunctions to generate the covariance matrix of a latent process.
Usage

legendre.polynomials(t, degree, normalized = TRUE)

Arguments

t the set of values to be evaluated, taking values from [0, 1]
degree the polynomial degree of the function, taking values as 0 (constant), 1 (linear), 2 (quadratic) and 3 (cubic)
normalized logical value; If TRUE (default) then the values are normalized such that the L^2 norm of the function values is 1

Details

Legendre polynomials can take any integers as degree, however, it is sufficient for most applications up to degree = 3. It is also messy to obtain the explicit expression for a degree greater than 3.

The logical value normalized take TRUE as the default, which means the generated eigenfunction basis matrix will be an orthogonal matrix.

Value

A vector which are the evaluations of the Legendre polynomial function at t.

See Also

DFT.basis

Examples

time points
t <- seq(from = 0, to = 1, length = 100)
basis matrix evaluated at the time points t
an intercept column is included
Phi <- cbind(legendre.polynomials(t, degree = 0), legendre.polynomials(t, degree = 1),
 legendre.polynomials(t, degree = 2), legendre.polynomials(t, degree = 3))
check the orthogonality
crossprod(Phi) # is equal to I_4 up to rounding errors
plot the basis system excluding the constant column
matplot(t, Phi[,2:4], type = "l", lwd = 2, lty = 1:3,
 ylab = "basis function", main = "Legendre Polynomials (normalized)")
legend("top", c("linear", "quadratic", "cubic"), col = 1:3, lwd = 2, lty = 1:3)
predict.kpbb

Evaluate a predefined Kronecker product B-spline basis at provided values

Description

Evaluate a predefined Kronecker product B-spline basis at provided values.

Usage

```r
## S3 method for class 'kpbb'
predict(object, tp.valid, cp.valid = NULL, ...)
```

Arguments

- **object**: the result returned by `kpbb` with corresponding attributes
- **tp.valid**: the new time points at which the evaluations are requested; mainly for validation purpose
- **cp.valid**: the new covariate points at which the evaluations are requested; mainly for validation purpose
- **...**: other arguments passed to the generic function

Details

When `cp.valid` is allowed to be `NULL`, when only an univariate basis is considered at `object`.

Value

An object just like the inputed `object`, except evaluated at the new values of `tp.valid` and `cp.valid`.

See Also

- `predict.kpbb`
- `data.simulation`

Examples

```r
data(data.simulation)  # load benchmark data
y <- DST$obs # matrix of observation
ty.valid <- DSV$obs # matrix of training data; include missing values
# generate bivariate basis using 3 knots for each direction
basis <- kpbb(DST$tp, DST$cp, nknots.tp = 3, nknots.cp = 3)
# linear regression
lm.fit <- lm(as.vector(y) ~ basis - 1)
# prediction
new.basis <- predict(basis, tp.valid = DSV$tp, cp.valid = DSV$cp)
y.predict <- matrix(crossprod(t(new.basis), coef(lm.fit)), nrow = length(DSV$cp))
# visualize the data and predicted surface
```
Reparameterization

Reparameterize Skewed Normal Parameterized using Shape and Skewness.

Description

The transformation functions used to reparameterize skewed normal from shape (direct parameter) to skewness (central parameter), and vice versa.

Usage

skewness.cp(alpha)
shape.dp(gamma)
D.gamma(alpha)

Arguments

alpha shape parameters
gamma skewness parameters

Details

For skewed normal distributions, there is a one-to-one mapping from the shape to the skewness, regardless of the other parameters such as mean and variances. The parameters (mean, variance, skewness) are called central parameters (cp), while (location, scale, shape) are called direct parameters (dp). When estimating model parameters, skewness (central parameter) is more stable than the shape parameter. Note that the skewness for a skewed normal is bounded.

Value

skewness.cp(alpha) gives the skewness corresponding to the shape alpha; shape.dp(gamma) gives the shape value corresponding to the skewness gamma.
D.gamma(alpha) gives the first and second derivative of skewness wrt. the shape alpha.
References

See Also

D. SN, cp2dp, dp2cp

Examples

gamma1 <- skewness.cp(10) # the skewness when the shape is 10
alpha1 <- shape.dp(gamma1) # the shape when the skewness is gamma1; should be 10
ret <- D.gamma(10) # the derivatives of the skewness as a function of the shape

Simulation Data with Skewed Marginal Distributions and Gaussian Copula (Simulated)

Description

This simulated benchmark data follows the model with skewed normal distribution as the marginal distribution and Gaussian copula as the dependence structure. It can be used to demonstrate the usage of methods and validation. DST is the Data Simulated for Training purpose; DSV is the Data Simulated for Validation (prediction) purpose.

Usage

data(data.simulation) # load data sets: DST and DSV
DST # data simulated for training
DSV # data simulated for validation

Format

Each of DST and DSV is a list containing the following components:

obs matrix of 100 observations (as row), with 80 timepoints for each
tp vector of time points, with length 80
cp vector of covariates for each subject, with length 100
pars parameter list with mean, logvar (matrices of 100 by 80) and shape, skew (vectors of length 80)
corr correlation matrix to determine the Gaussian copula

In addition, each data set contains one specific component:

quantile 3-dimensional array with dimension c(5, 100, 80) for the true quantiles of the quantile levels c(.50, .80, .90, .95, .99); only available for the training data set DST
SSN

obs.full fully observed observation matrix with dimension c(100, 80), in the validation data set DSV;
obs in DSV contains missing values, and obs.full can be used to measure the performance of predication at those points where missing values are observed.

SSN

Standard Skewed Normal Parameterized using Skewness.

Description

Calculate the density function, log density function, and derivatives of the standard skewed normal (SSN) distribution parameterized using skewness.

Usage

g(y, gamma, log = FALSE)
D.lg(y, gamma)

Arguments

y function argument, taking values in the real line
gamma skewness parameter; should have the same dimension as y
log logical; if TRUE, the log of g(y, gamma) is given

Details

Calculate the pdf (probability density function) and derivatives of standard skewed normal when parameterized by skewness.

Value

g(y, gamma) gives the pdf value at y and gamma as the skewness; g(y, gamma, log = TRUE) gives the log of the pdf value at y and gamma as the skewness; D.lg(y, gamma) gives the list of derivatives of the log pdf at y and gamma with the following components:

D1 1st derivative of log.g(y, gamma) wrt. y
D2 1st derivative of log.g(y, gamma) wrt. gamma
D12 2nd cross-partial derivative of log.g(y, gamma) wrt. y and gamma
D11 2nd derivative of log.g(y, gamma) wrt. y
D22 2nd derivative of log.g(y, gamma) wrt. gamma

See Also

D.SN, shape.dp, skewness.cp, D.gamma
Examples

pdf of SSN
ret1 <- g(seq(-3, 3, length = 100), 0.9)

plot the pdf
plot(seq(-3, 3, length = 100), ret1, type = "l",
 xlab = "x", ylab = "pdf", main = "Plot of Standard Skewed Normal Density")

derivatives of pdf
ret2 <- D.lg(10, 0.5)

y and a are a vector
ret3 <- D.lg(rnorm(10), seq(0.1, 0.5, length = 10))

y and a are matrices
ret4 <- D.lg(matrix(rnorm(10), 2, 5), matrix(seq(0.1, 0.5, length = 10), 2, 5))

uni.fpca

Functional Principle Component Analysis with Corpula

Description

uni.fpca is used to do regular FPCA for univariate data with given covariance matrix. The sample covariance matrix will be used if covariance matrix is not given.

Usage

uni.fpca(Y, Kendall = NULL, Y.pred = NULL,
 nbasis.mean = 10, nbasis = 10, pve = 0.99, npc = NULL,
 center = TRUE, gam.method = "REML")

Arguments

Y matrix for the fully observed curves; each row corresponds to one subject
Kendall given covariance matrix for Y (raw matrix up to smoothing); typically obtained using Kendall’s Tau approach. See ’Details’
Y.pred partially observed curves to be predicted; default is NULL indicating no prediction on new data set
nbasis.mean number of basis functions to smooth the mean
nbasis number of basis functions for each direction to smooth the covariance matrix
pve threshold of the percentage of variance explained to select number of principal components
npc prespecified value for the number of principal components to be included in the expansion (if given, this overrides ’pve’).
center if TRUE, we center the curves; otherwise, do not center the curves and assume the curves have mean 0 already
gam.method estimation method when using gam
uni.fpca

Details

This function is built in the spirit of the function fpca.sc in the package refund, but here the copula plays a role. The covariance matrix Kendall is typically estimated before the application of this function, for instance, via Kendall's Tau approach. It is highly recommended that the Knedall's Tau covariance matrix should be provided here since it is more stable.

Value

A list of the following components:

- \(\text{yhat} \) matrix whose rows are the estimates through Functional FPCA of the curves in \(Y \)
- \(\text{scores} \) matrix of estimated principal component scores
- \(\text{mu} \) estimated mean function
- \(\text{efunctions} \) matrix of estimated eigenfunctions of the functional covariance operator, i.e., the FPC basis functions
- \(\text{evalues} \) estimated eigenvalues of the covariance operator, i.e., variances of FPC scores
- \(\text{npc} \) number of FPCs: either the supplied \(\text{npc} \), or the minimum number of basis functions needed to explain proportion \(pve \) of the variance in the observed curves
- \(\text{K.tilde} \) Smoothed covariance matrix of \(Y \) after removing white noises
- \(\text{K.hat} \) Smoothed covariance matrix of \(Y \)
- \(\text{sigma2} \) estimated measurement error variance

References

Examples

data(data.simulation)
fpca <- uni.fpca(Y = DST$obs, Y.pred=DSV$obs)

visualize the data and predicted surface
par(mfrow = c(1,2))
persp(DSVcp, DSVtp, DSV$obs, theta=60, phi=15,
ticktype = "detailed", col="lightblue",
 xlab = "covariate", ylab = "time",
 zlab="data", main="data surface (partially observed)"
)
persp(DSVcp, DSVtp, fpca$yhat, theta=60, phi=15,
ticktype = "detailed", col="lightblue",
 xlab = "covariate", ylab = "time",
 zlab="data", main="predicted surface via univariate FPCA"
)

predication error
mean(((fpca$yhat - DSV$obs.full)[!is.na(DSV$obs)])^2)
unmll

Negative loglikelihood function and the Gradient

Description

Calculate the negative loglikelihood function as the objective function to be minimize in terms of coefficients β's. The mean and variance parameters are bivariate, while the skewness parameter is univariate. The gradient is calculated by a closed form.

Usage

```r
case2.unmll.optim(beta, dataone, Basis.list, cate = 1)
case2.gr(beta, dataone, Basis.list, cate = 1)
```

Arguments

- `beta`: smoothing coefficients as a vector
- `dataone`: observation as a matrix n by m (n: number of subjects; m: number of timepoints)
- `Basis.list`: a list of 3 components corresponding to smooth matrices for (mu, logvar, and skewness), typically generated by `kpbb`
- `cate`: category of model to be considered; 1 for full model, 2 for the model when the skewness is fixed at 0 (no skewness)

Details

The coefficient β is a vector by combining all coefficients for the mean, variance and skewness.

Value

- `case2.unmll.optim`: negative loglinehood at beta when `dataone` and the `Basis.list` is used
- `case2.gr`: gradient vector of `case2.unmll.optim` at beta when `dataone` and the `Basis.list` is used

Note

This is the negative log Marginal likelihood function of the data assuming independence.

References

See Also

- `kpbb`
Examples

data(data.simulation)
y <- DST$obs
tp <- DST$tp
cp <- DST$cp
generate basis
cases = c(2,2,1) # bivariate for mean and variance, univariate for shape
nknots.tp = c(2,2,2) # 2 knots at time direction for each parameter
nknots.cp = c(2,2) # 2 knots at covariate direction for mean and variance
basis.list <- lapply(1:3, function(k)
 kpbb(tp, cp, nknots.tp = nknots.tp[k],
 nknots.cp = nknots.cp[k], sub.case=cases[k]))
obtain coefficients randomly
length.beta <- sum(sapply(basis.list, ncol))
beta <- runif(length.beta)
unmll <- case2.unmll.optim(beta, y, basis.list)
gradient <- case2.gr(beta, y, basis.list)
Index

*Topic **FPCA**
 uni.fpca, 22

*Topic **basis**
 cp.beta, 4
 DFT.basis, 14
 kpbb, 15
 legendre.polynomials, 16
 predict.kpbb, 18

*Topic **cSFM**
 cSFM.est, 6
 cSFM.est.parallel, 8
 Data Simulation, 12

*Topic **datasets**
 Simulation, 20

*Topic **gradient**
 unml1, 24

*Topic **likelihood**
 unml1, 24

*Topic **package**
 cSFM-package, 2

*Topic **skewed normal distributions**
 D.SN, 10
 Reparameterization, 19
 SSN, 21

beta2cp (cp.beta), 4
bs, 16

case2.b.initial, 3
case2.gr (unml1), 24
case2.unml1.optim (unml1), 24
clusterMap, 10
cp.beta, 4
cp2beta (cp.beta), 4
cp2dp, 20
cSFM (cSFM-package), 2
cSFM object, 5
cSFM-package, 2
cSFM.est, 2, 3, 5, 6, 6, 8–10
cSFM.est.parallel, 2, 8

D.gamma, 21
D.gamma (Reparameterization), 19
D.lg (SSN), 21
D.SN, 10, 20, 21
Data Simulation, 12
data.generator.y.F (Data Simulation), 12
data.simulation, 2, 7, 16, 18
data.simulation (Simulation), 20
DFT.basis, 14, 17
dp2cp, 20
dsn, 11
DST (Simulation), 20
DSV (Simulation), 20
fitted, 2, 5, 6
fitted.cSFM, 7
fitted.cSFM (cSFM object), 5
g (SSN), 21
gam, 7, 22

kpbb, 15, 18, 24

legendre.polynomials, 15, 16

predict, 2, 5, 6
predict.cSFM, 7
predict.cSFM (cSFM object), 5
predict.kpbb, 16, 18, 18
print, 2, 5, 6
print.cSFM, 7
print.cSFM (cSFM object), 5
Reparameterization, 19

shape.dp, 11, 21
shape.dp (Reparameterization), 19
Simulation, 20
skewness.cp, 11, 21
skewness.cp (Reparameterization), 19
SSN, 21
INDEX

uni.fpc. 22
unmll. 24