Package ‘huge’

February 28, 2014

Type Package

Title High-dimensional Undirected Graph Estimation

Version 1.2.6

Date 2014-02-16

Author Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, Larry Wasserman

Maintainer Tuo Zhao <tzhao5@jhu.edu>

Depends R (>= 3.0.0), Matrix, lattice, igraph, MASS

Description The package `huge` provides a general framework for high-dimensional undirected graph estimation. It integrates data preprocessing, neighborhood screening, graph estimation, and model selection techniques into a pipeline. In preprocessing stage, the nonparanormal(npn) transformation is applied to help relax the normality assumption. In the graph estimation stage, the graph structure is estimated by Meinshausen-Buhlmann graph estimation or the graphical lasso, and both methods can be further accelerated by the lossy screening rule preselecting the neighborhood of each variable by correlation thresholding. We target on high-dimensional data analysis usually d >> n, and the computation is memory-optimized using the sparse matrix output. We also provide a computationally efficient approach, correlation thresholding graph estimation. Three regularization/thresholding parameter selection methods are included in this package: (1) stability approach for regularization selection (2) rotation information criterion (3) extended Bayesian information criterion which is only available for the graphical lasso.

License GPL-2

Repository CRAN

Date/Publication 2014-02-28 07:00:50

NeedsCompilation yes
R topics documented:

huge-package ... 2
huge ... 4
huge-internal ... 7
huge.generator ... 8
huge.npn ... 10
huge.plot ... 12
huge.roc ... 14
huge.select ... 16
plot.huge ... 19
plot.oc ... 20
plot.select .. 21
plot.sim ... 22
print.huge ... 22
print.roc ... 23
print.select .. 24
print.sim ... 25
stockdata ... 28

Index 30

| huge-package | High-dimensional Undirected Graph Estimation |

Description

A package for high-dimensional undirected graph estimation

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>huge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.2.6</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-02-16</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

The package "huge" provides 8 main functions:
1. the data generator creates random samples from multivariate normal distributions with different graph structures. Please refer to huge.generator.
2. the nonparanormal (npn) transformation helps relax the normality assumption. Please refer to huge.npn.
3. The correlation thresholding graph estimation. Please refer to huge.
4. The Meinshausen-Buhlmann graph estimation. Please refer to huge.
5. The graphical Lasso algorithm using lossless screening rule. Please refer and huge.
Both (4) and (5) can be further accelerated by the lossy screening rule preselecting the neighborhood of each node via thresholding sample correlation.

(6) The model selection using the stability approach to regularization selection. Please refer to huge.select.

(7) The model selection using the rotation information criterion. Please refer to huge.select.

(8) The model selection using the extended Bayesian information criterion. Please refer to huge.select.

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman

Maintainers: Tuo Zhao<tzhao5@jhu.edu>;

References

See Also

huge.generator, huge.npn, huge, huge.plot and huge.roc
Description

The main function for high-dimensional undirected graph estimation. Three graph estimation methods, including (1) Meinshausen-Buhlmann graph estimation (mb) (2) graphical lasso (glasso) and (3) correlation thresholding graph estimation (ct), are available for data analysis.

Usage

huge(x, lambda = NULL, nlambda = NULL, lambda.min.ratio = NULL, method = "mb", scr = NULL, scr.num = NULL, cov.output = FALSE, sym = "or", verbose = TRUE)

Arguments

x
There are 2 options: (1) x is an n by d data matrix (2) a d by d sample covariance matrix. The program automatically identifies the input matrix by checking the symmetry. (n is the sample size and d is the dimension).

lambda
A sequence of decreasing positive numbers to control the regularization when method = "mb" or "glasso", or the thresholding in method = "ct". Typical usage is to leave the input lambda = NULL and have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Users can also specify a sequence to override this. When method = "mb" or "glasso", use with care - it is better to supply a decreasing sequence values than a single (small) value.

nlambda
The number of regularization/thresholding parameters. The default value is S0 for method = "ct" and Q0 for method = "mb" or "glasso".

lambda.min.ratio
If method = "mb" or "glasso", it is the smallest value for lambda, as a fraction of the upper bound (MAX) of the regularization/thresholding parameter which makes all estimates equal to 0. The program can automatically generate lambda as a sequence of length = nlambda starting from MAX to lambda.min.ratio*MAX in log scale. If method = "ct", it is the largest sparsity level for estimated graphs. The program can automatically generate lambda as a sequence of length = nlambda, which makes the sparsity level of the graph path increases from 0 to lambda.min.ratio evenly. The default value is 0.1 when method = "mb" or "glasso", and 0.05 method = "ct".

method
Graph estimation methods with 3 options: "mb", "ct" and "glasso". The default value is "mb".

scr
If scr = TRUE, the lossy screening rule is applied to preselect the neighborhood before the graph estimation. The default value is FALSE. NOT applicable when method = "ct".

scr.num
The neighborhood size after the lossy screening rule (the number of remaining neighbors per node). ONLY applicable when scr = TRUE. The default value
is $n-1$. An alternative value is $n/\log(n)$. ONLY applicable when `scr = TRUE` and `method = "mb"`.

cov.output If `cov.output = TRUE`, the output will include a path of estimated covariance matrices. ONLY applicable when `method = "glasso"`. Since the estimated covariance matrices are generally not sparse, please use it with care, or it may take much memory under high-dimensional setting. The default value is `FALSE`.

sym Symmetrize the output graphs. If `sym = "and"`, the edge between node i and node j is selected ONLY when both node i and node j are selected as neighbors for each other. If `sym = "or"`, the edge is selected when either node i or node j is selected as the neighbor for each other. The default value is "or". ONLY applicable when `method = "mb"`.

verbose If `verbose = FALSE`, tracing information printing is disabled. The default value is `TRUE`.

Details

The graph structure is estimated by Meinshausen-Buhlmann graph estimation or the graphical lasso, and both methods can be further accelerated via the lossy screening rule by preselecting the neighborhood of each variable by correlation thresholding. We target on high-dimensional data analysis usually $d > n$, and the computation is memory-optimized using the sparse matrix output. We also provide a highly computationally efficient approaches correlation thresholding graph estimation.

Value

An object with S3 class "huge" is returned:

data The n by d data matrix or d by d sample covariance matrix from the input

cov.input An indicator of the sample covariance.

ind.mat The $scr.num$ by k matrix with each column corresponding to a variable in `ind.group` and contains the indices of the remaining neighbors after the GSS. ONLY applicable when `scr = TRUE` and `approx = FALSE`

lambda The sequence of regularization parameters used in mb or thresholding parameters in ct.

sym The `sym` from the input. ONLY applicable when `method = "mb"`.

scr The `scr` from the input. ONLY applicable when `method = "mb"` or "glasso".

path A list of k by k adjacency matrices of estimated graphs as a graph path corresponding to `lambda`

sparsity The sparsity levels of the graph path.

icov A list of d by d precision matrices as an alternative graph path (numerical path) corresponding to `lambda`. ONLY applicable when `method = "glasso"`

cov A list of d by d estimated covariance matrices corresponding to `lambda`. ONLY applicable when `cov.output = TRUE` and `method = "glasso"`

method The method used in the graph estimation stage.
If \texttt{method} = "mb", it is a \texttt{k} by \texttt{nlambda} matrix. Each row contains the number of nonzero coefficients along the lasso solution path. If \texttt{method} = "glasso", it is a \texttt{nlambda} dimensional vector containing the number of nonzero coefficients along the graph path \texttt{icov}.

\texttt{loglik} is a \texttt{nlambda} dimensional vector containing the likelihood scores along the graph path (\texttt{icov}). ONLY applicable when \texttt{method} = "glasso". For an estimated inverse covariance \texttt{Z}, the program only calculates \(\log(\det(Z)) - \text{trace}(SZ)\) where \(S\) is the empirical covariance matrix. For the likelihood for \(n\) observations, please multiply by \(n/2\).

\section*{Note}
This function ONLY estimates the graph path. For more information about the optimal graph selection, please refer to \texttt{huge.select}.

\section*{Author(s)}
Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao\texttt{<tzhao5@jhu.edu>}

\section*{References}
Description

Internal huge functions

Details

These are not intended for use by users. Please refer to huge()

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<Tuo Zhao<tzhao5@jhu.edu>
huge.generator

Description

Implements the data generation from multivariate normal distributions with different graph structures, including "random", "hub", "cluster", "band" and "scale-free".

Usage

```r
huge.generator(n = 200, d = 50, graph = "random", v = NULL, u = NULL,
               g = NULL, prob = NULL, vis = FALSE, verbose = TRUE)
```

Arguments

- **n**: The number of observations (sample size). The default value is 200.
- **d**: The number of variables (dimension). The default value is 50.
- **graph**: The graph structure with 4 options: "random", "hub", "cluster", "band" and "scale-free".
- **v**: The off-diagonal elements of the precision matrix, controlling the magnitude of partial correlations with `u`. The default value is 0.3.
- **u**: A positive number being added to the diagonal elements of the precision matrix, to control the magnitude of partial correlations. The default value is 0.1.
- **g**: For "cluster" or "hub" graph, g is the number of hubs or clusters in the graph. The default value is about `d/20` if `d >= 40` and 2 if `d < 40`. For "band" graph, g is the bandwidth and the default value is 1. NOT applicable to "random" graph.
- **prob**: For "random" graph, it is the probability that a pair of nodes has an edge. The default value is `3/d`. For "cluster" graph, it is the probability that a pair of nodes has an edge in each cluster. The default value is `6*g/d` if `d/g <= 30` and 0.3 if `d/g > 30`. NOT applicable to "hub" or "band" graphs.
- **vis**: Visualize the adjacency matrix of the true graph structure, the graph pattern, the covariance matrix and the empirical covariance matrix. The default value is FALSE.
- **verbose**: If `verbose = FALSE`, tracing information printing is disabled. The default value is TRUE.

Details

Given the adjacency matrix `theta`, the graph patterns are generated as below:

(I) "random": Each pair of off-diagonal elements are randomly set `theta[i,j]=theta[j,i]=1` for `i!=j` with probability `prob`, and 0 otherwise. It results in about `d*(d-1)*prob/2` edges in the graph.

(II) "hub": The row/columns are evenly partitioned into `g` disjoint groups. Each group is associated
with a "center" row in that group. Each pair of off-diagonal elements are set $\theta[i,j]=\theta[j,i]=1$ for $i \neq j$ if j also belongs to the same group as i and 0 otherwise. It results in $d \cdot g$ edges in the graph.

(III) "cluster": The row/columns are evenly partitioned into g disjoint groups. Each pair of off-diagonal elements are set $\theta[i,j]=\theta[j,i]=1$ for $i \neq j$ with the probability prob if both i and j belong to the same group, and 0 otherwise. It results in about $g \cdot (d/g) \cdot (d/g-1) \cdot \text{prob}/2$ edges in the graph.

(IV) "band": The off-diagonal elements are set to be $\theta[i,j]=1$ if $1 \leq |i-j| \leq g$ and 0 otherwise. It results in $(2d-1) \cdot g/2$ edges in the graph.

(V) "scale-free": The graph is generated using B-A algorithm. The initial graph has two connected nodes and each new node is connected to only one node in the existing graph with the probability proportional to the degree of the each node in the existing graph. It results in d edges in the graph.

The adjacency matrix θ has all diagonal elements equal to 0. To obtain a positive definite precision matrix, the smallest eigenvalue of $\theta^\ast v$ (denoted by e) is computed. Then we set the precision matrix equal to $\theta^\ast v + (|e| + 0.1 + u)I$. The covariance matrix is then computed to generate multivariate normal data.

Value

An object with S3 class "sim" is returned:

- **data**: The $n \times d$ matrix for the generated data
- **sigma**: The covariance matrix for the generated data
- **omega**: The precision matrix for the generated data
- **sigmahat**: The empirical covariance matrix for the generated data
- **theta**: The adjacency matrix of true graph structure (in sparse matrix representation) for the generated data

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

5. R. Foygel and M. Drton. Extended bayesian information criteria for gaussian graphical models.

See Also
huge and huge-package

Examples

```r
## band graph with bandwidth 3
L = huge.generator(graph = "band", g = 3)
plot(L)

## random sparse graph
L = huge.generator(vis = TRUE)

## random dense graph
L = huge.generator(prob = 0.5, vis = TRUE)

## hub graph with 6 hubs
L = huge.generator(graph = "hub", g = 6, vis = TRUE)

## hub graph with 8 clusters
L = huge.generator(graph = "cluster", g = 8, vis = TRUE)

## scale-free graphs
L = huge.generator(graph="scale-free", vis = TRUE)
```

huge.npn

Nonparanormal(npn) transformation

Description

Implements the Gaussianization to help relax the assumption of normality.
Usage

`huge.npn(x, npn.func = "shrinkage", npn.thresh = NULL, verbose = TRUE)`

Arguments

- `x` The n by d data matrix representing n observations in d dimensions
- `npn.func` The transformation function used in the npn transformation. If `npn.func = "truncation"`, the truncated ECDF is applied. If `npn.func = "shrinkage"`, the shrunken ECDF is applied. The default is "shrinkage". If `npn.func = "skeptic"`, the nonparanormal skeptic is applied.
- `npn.thresh` The truncation threshold used in nonparanormal transformation, ONLY applicable when `npn.func = "truncation"`. The default value is `1/(4*(n^0.25)*sqrt(pi*log(n)))`.
- `verbose` If `verbose = FALSE`, tracing information printing is disabled. The default value is `TRUE`.

Details

The nonparanormal extends Gaussian graphical models to semiparametric Gaussian copula models. Motivated by sparse additive models, the nonparanormal method estimates the Gaussian copula by marginally transforming the variables using smooth functions. Computationally, the estimation of a nonparanormal transformation is very efficient and only requires one pass of the data matrix.

Value

- `data` A d by d nonparanormal correlation matrix if `npn.func = "skeptic"`, and A n by d data matrix representing n observations in d transformed dimensions otherwise.

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

7. J. Fan and J. Lv. Sure independence screening for ultra-high dimensional feature space (with
8. O. Banerjee, L. E. Ghaoui, A. d’Aspremont: Model Selection Through Sparse Maximum Likeli-
hood Estimation for Multivariate Gaussian or Binary Data. Journal of Machine Learning Research,
2008.
10. J. Friedman, T. Hastie and R. Tibshirani. Sparse inverse covariance estimation with the lasso,
11. N. Meinshausen and P. Buhlmann. High-dimensional Graphs and Variable Selection with the

See Also

huge and huge-package.

Examples

generate nonparanormal data
g = huge.generator(graph = "cluster", g = 5)
g$data = g$data * 5

transform the data using the shrunken ECDF
Q = huge.npn(g$data)

transform the non-Gaussian data using the truncated ECDF
Q = huge.npn(g$data, npn.func = "truncation")

transform the non-Gaussian data using the truncated ECDF
Q = huge.npn(g$data, npn.func = "skeptic")

huge.plot

Graph visualization

Description

Implements the graph visualization using adjacency matrix. It can automatic organize 2D embed-
ding layout.

Usage

huge.plot(G, epsflag = FALSE, graph.name = "default", cur.num = 1, location)
Arguments

G
The adjacency matrix corresponding to the graph.

epsflag
If epsflag = TRUE, save the plot as an eps file in the target directory. The default value is FALSE.

graph.name
The name of the output eps files. The default value is "default".

cur.num
The number of plots saved as eps files. Only applicable when epsflag = TRUE. The default value is 1.

location
Target directory. The default value is the current working directory.

Details

The user can change cur.num to plot several figures and select the best one. The implementation is based on the popular package "igraph".

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

Draw ROC Curve for a graph path

Description

Draws ROC curve for a graph path according to the true graph structure

Usage

```r
huge.roc(path, theta, verbose = TRUE)
```

Arguments

- `path` A graph path.
- `theta` The true graph structure.
- `verbose` If `verbose = FALSE`, tracing information printing is disabled. The default value is `TRUE`.

Details

To avoid the horizontal oscillation, false positive rates is automatically sorted in the ascent order and true positive rates also follow the same order.
Value

An object with S3 class "roc" is returned:

- **F1**: The F1 scores along the graph path.
- **tp**: The true positive rates along the graph path.
- **fp**: The false positive rates along the graph paths.
- **AUC**: Area under the ROC curve.

Note

For a lasso regression, the number of nonzero coefficients is at most $n - 1$. If $d \gg n$, even when regularization parameter is very small, the estimated graph may still be sparse. In this case, the AUC may not be a good choice to evaluate the performance.

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

See Also

`huge` and `huge-package`
Examples

```r
# generate data
data <- huge.generator(d = 200, graph = "cluster", prob = 0.3)
out1 <- huge(data)

# draw ROC curve
Z1 <- huge.roc(out1$path, out1$theta)

# Maximum F1 score
max(Z1$F1)
```

huge.select

Model selection for high-dimensional undirected graph estimation

Description

Implements the regularization parameter selection for high dimensional undirected graph estimation. The optional approaches are rotation information criterion (ric), stability approach to regularization selection (stars) and extended Bayesian information criterion (ebic).

Usage

```r
huge.select(est, criterion = NULL, ebic.gamma = 0.5, stars.thresh = 0.1,
            stars.subsample.ratio = NULL, rep.num = 20, verbose = TRUE)
```

Arguments

- `est` An object with S3 class "huge"
- `criterion` Model selection criterion. "ric" and "stars" are available for all 3 graph estimation methods. `ebic` is only applicable when `est$method = "lasso"` in `huge()`. The default value is "ric".
- `ebic.gamma` The tuning parameter for `ebic`. The default value is 0.5. Only applicable when `est$method = "lasso"` and `criterion = "ebic"`.
- `stars.thresh` The variability threshold in stars. The default value is 0.1. An alternative value is 0.05. Only applicable when `criterion = "stars"`.
- `stars.subsample.ratio` The subsampling ratio. The default value is $10 \times \sqrt{n}/n$ when $n \geq 144$ and 0.8 when $n < 144$, where n is the sample size. Only applicable when `criterion = "stars"`.
- `rep.num` The number of subsamplings when `criterion = "stars"` or rotations when `criterion = "ric"`. The default value is 20. NOT applicable when `criterion = "ebic"`.
- `verbose` If `verbose = FALSE`, tracing information printing is disabled. The default value is TRUE.
Details

Stability approach to regularization selection (stars) is a natural way to select optimal regularization parameter for all three estimation methods. It selects the optimal graph by variability of subsamplings and tends to overselect edges in Gaussian graphical models. Besides selecting the regularization parameters, stars can also provide an additional estimated graph by merging the corresponding subsampled graphs using the frequency counts. The subsampling procedure in stars may NOT be very efficient, we also provide the recent developed highly efficient, rotation information criterion approach (ric). Instead of tuning over a grid by cross-validation or subsampling, we directly estimate the optimal regularization parameter based on random Rotations. However, ric usually has very good empirical performances but suffers from underselections sometimes. Therefore, we suggest if user are sensitive of false negative rates, they should either consider increasing r.num or applying the stars to model selection. Extended Bayesian information criterion (ebic) is another competitive approach, but the ebic.gamma can only be tuned by experience.

Value

An object with S3 class "select" is returned:

- **refit**: The optimal graph selected from the graph path
- **opt.icov**: The optimal precision matrix from the path only applicable when method = "glasso"
- **opt.cov**: The optimal covariance matrix from the path only applicable when method = "glasso" and est$cov is available.
- **merge**: The graph path estimated by merging the subsampling paths. Only applicable when the input criterion = "stars".
- **variability**: The variability along the subsampling paths. Only applicable when the input criterion = "stars".
- **ebic.scores**: Extended BIC scores for regularization parameter selection. Only applicable when criterion = "ebic".
- **opt.index**: The index of the selected regularization parameter. NOT applicable when the input criterion = "ric"
- **opt.lambda**: The selected regularization/thresholding parameter.
- **opt.sparsity**: The sparsity level of "refit".

and anything else included in the input est

Note

The model selection is NOT available when the data input is the sample covariance matrix.

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>
References

See Also

huge and huge-package.

Examples

```R
#generate data
L = huge.generator(d = 20, graph="hub")
out.mb = huge(L$data)
out.ct = huge(L$data, method = "ct")
out.glasso = huge(L$data, method = "glasso")

#model selection using ric
out.select = huge.select(out.mb)
plot(out.select)

#model selection using stars
out.select = huge.select(out.ct, criterion = "stars", stars.thresh = 0.05, rep.num=10)
plot(out.select)

#model selection using ebic
out.select = huge.select(out.glasso, criterion = "ebic")
plot(out.select)
```
plot.huge

Plot function for S3 class "huge"

Description
Plot sparsity level information and 3 typical sparse graphs from the graph path

Usage
```r
## S3 method for class 'huge'
plot(x, align = FALSE, ...)
```

Arguments
- `x`: An object with S3 class "huge"
- `align`: If `align = FALSE`, 3 plotted graphs are aligned
- `...`: System reserved (No specific usage)

Author(s)
Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References
11. N. Meinshausen and P. Buhlmann. High-dimensional Graphs and Variable Selection with the

See Also

`huge`

plot.roc
Plot function for S3 class "roc"

Description

Plot the ROC curve for an object with S3 class "roc"

Usage

```r
## S3 method for class 'roc'
plot(x, ...)  
```

Arguments

- `x`: An object with S3 class "roc"
- `...`: System reserved (No specific usage)

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

plot.select

2008.

See Also

huge.roc

plot.select

Plot function for S3 class "select"

Description

Plot the optimal graph by model selection

Usage

```r
## S3 method for class 'select'
plot(x, ...)  
```

Arguments

- `x` An object with S3 class "select"
- `...` System reserved (No specific usage)

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

See Also

`huge.select`

plot.sim

Description

Visualize the covariance matrix, the empirical covariance matrix, the adjacency matrix and the graph pattern of the true graph structure.

Usage

```r
# S3 method for class 'sim'
plot(x, ...)
```

Arguments

- `x`: An object with S3 class "sim"
- `...`: System reserved (No specific usage)

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>
References

See Also

`huge_generator` and `huge`

print.huge

Print function for S3 class "huge"

Description

Print the information about the model usage, the graph path length, graph dimension, sparsity level

Usage

```r
## S3 method for class 'huge'
print(x, ...)
```

Arguments

- `x` An object with S3 class "huge"
- `...` System reserved (No specific usage)
Author(s)
Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

See Also
huge and huge

print.roc

Print function for S3 class "roc"

Description
Print the information about true positive rates, false positive rates, the area under curve and maximum F1 score

Usage
```r
## S3 method for class 'roc'
print(x, ...)
```
Arguments

- **x**: An object with S3 class "roc"
- **...**: System reserved (No specific usage)

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

See Also

- huge.roc and huge

print.select

*Print function for S3 class *"select"*

Description

Print the information about the model usage, graph dimension, model selection criterion, sparsity level of the optimal graph
Usage

```r
## S3 method for class 'select'
print(x, ...)
```

Arguments

- `x` An object with S3 class "select"
- `...` System reserved (No specific usage)

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

See Also

- `huge.select` and `huge`
Description

Print the information about the sample size, the dimension, the pattern and sparsity of the true graph structure.

Usage

```r
## S3 method for class 'sim'
print(x, ...)
```

Arguments

- `x`:
 - An object with S3 class "sim"
- `...`:
 - System reserved (No specific usage)

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman

Maintainers: Tuo Zhao <tzhao5@jhu.edu>

References

11. N. Meinshausen and P. Buhlmann. High-dimensional Graphs and Variable Selection with the
See Also

huge.generator and huge.generator

stockdata

Stock price of S&P 500 companies from 2003 to 2008

Description

This data set consists of stock price and company information.

Usage

data(stockdata)

Format

The format is a list containing two matrices. 1. data - 1258x452, represents the 452 stocks’ close prices for 1258 trading days. 2. info - 452x3: The 1st column: the query symbol for each company. The 2nd column: the category for each company. The 3rd column: the full name of each company.

Details

This data set can be used to perform high-dimensional graph estimation to analyze the relationships between S&P 500 companies.

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

Source

It is publicly available at http://ichart.finance.yahoo.com

References

Examples

```r
data(stockdata)
image(stockdata$data)
stockdata$info
```
Index

*Topic **datasets**
 stockdata, 28

huge, 2, 3, 4, 10, 12, 14, 15, 18, 20, 23–26
huge-internal, 7
huge-package, 2
huge.ct (huge-internal), 7
huge.generator, 2, 3, 7, 8, 23, 28
huge.glasso (huge-internal), 7
huge.mb (huge-internal), 7
huge.npn, 2, 3, 10
huge.plot, 3, 7, 12
huge.roc, 3, 7, 14, 21, 25
huge.select, 3, 6, 7, 16, 22, 26

plot.huge, 19
plot.roc, 20
plot.select, 21
plot.sim, 22
print.huge, 23
print.roc, 24
print.select, 25
print.sim, 27

stockdata, 28