Package ‘shrink’

October 21, 2013

Type Package

Title Global, Parameterwise, and Joint Post-Estimation Shrinkage

Version 1.1

Date 2013-10-21

Author Daniela Dunkler, Georg Heinze

Maintainer Daniela Dunkler <daniela.dunkler@meduniwien.ac.at>

Description Post-estimation shrinkage of regression coefficients in statistical modeling can be used to correct for the overestimation of regression coefficients caused by variable selection. While global shrinkage modifies all regression coefficients by the same factor, parameterwise shrinkage factors differ between regression coefficients. With highly correlated or semantically related variables, such as several columns of a design matrix describing a nonlinear effect, parameterwise shrinkage factors are not interpretable and a compromise between global and parameterwise shrinkage, termed ‘joint shrinkage’, is a useful extension. A computational shortcut to resampling-based shrinkage factor estimation based on DFBETA residuals is applied. Global, parameterwise, and joint shrinkage for models fitted by lm, glm, coxph, or mfp is available.

Suggests survival, mfp, rms, MASS

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2013-10-21 19:46:47

R topics documented:

 shrink-package .. 2
 coef.shrink .. 4
 deepvein .. 4
Description

In statistical modeling post-estimation shrinkage can be used to correct for the overestimation of regression coefficients caused by variable selection. While global shrinkage modifies all regression coefficients by the same factor, parameterwise shrinkage factors differ between regression coefficients. With highly correlated or semantically related variables, such as several columns of a design matrix describing a nonlinear effect, parameterwise shrinkage factors are not interpretable and a compromise between global and parameterwise shrinkage, termed 'joint shrinkage', is a useful extension. A computational shortcut to resampling-based shrinkage factor estimation based on DFBETA residuals is applied. Global, parameterwise, and joint shrinkage for models fitted by \texttt{lm}, \texttt{glm}, \texttt{coxph}, and \texttt{mfp} is available.

Details

Package: shrink
Type: Package
Version: 1.1.
Date: 2013-10-21
License: GPL-2

Functions contained in the \texttt{shrink}-package are

\texttt{shrink} \hspace{1cm} a function to compute global, parameterwise, and joint post-estimation shrinkage factors of fit objects of class \texttt{lm}, \texttt{glm}, \texttt{coxph}, or \texttt{mfp}.

\texttt{coef.shrink} \hspace{1cm} returns shrunken regression coefficients from objects of class \texttt{shrink}.

\texttt{predict.shrink} \hspace{1cm} obtains predictions from shrunken regression coefficients from a fit object of class \texttt{shrink}.

\texttt{print.shrink} \hspace{1cm} prints objects of class \texttt{shrink}.

Data set contained in the \texttt{shrink}-package

\texttt{deepvein} \hspace{1cm} deep vein thrombosis study
Author(s)

Daniela Dunkler, Georg Heinze
Maintainer: <daniela.dunkler@meduniwien.ac.at>

References

See Also

shrink, coef.shrink, predict.shrink, print.shrink

Examples

with glm, family = binomial
set.seed(888)
intercept <- 1
beta <- c(0.5, 1.2)
n <- 200
x1 <- rnorm(n, mean = 1, sd = 1)
x2 <- rbinom(n, size = 1, prob = 0.3)
prob <- exp(linpred)/(1 + exp(linpred))
runis <- runif(n,0,1)
ytest <- ifelse(runis < prob,1,0)
simdat <- data.frame(cbind(y = ifelse(runis < prob, 1, 0), x1, x2))
fit <- glm(y ~ x1 + x2, family = binomial, data = simdat, x = TRUE)
summary(fit)

global <- shrink(fit, type = "global", method = "dfbeta")
print(global)
coef(global)

shrink(fit, type = "parameterwise", method = "dfbeta")

shrink(fit, type = "parameterwise", method = "dfbeta", join = list(c("x1", "x2")))

#shrink(fit, type = "global", method = "jackknife")
#shrink(fit, type = "parameterwise", method = "jackknife")
#shrink(fit, type = "parameterwise", method = "jackknife",
join = list(c("x1", "x2")))

For more examples see shrink
Description

This class of objects is returned by the shrink function. Objects of this class have methods for the functions coeff, predict, and print.

Usage

```r
## S3 method for class 'shrink'
coef(object, ...)
```

Arguments

- `object`: object of class `shrink`.
- `...`: further arguments.

Value

A vector with shrunken regression coefficients.

Author(s)

Daniela Dunkler, Georg Heinze

See Also

`shrink`, `print.shrink`

`deepvein`
Deep Vein Thrombosis Study

Description

A data frame containing time to recurrence of thrombosis and several potential prognostic factors for 929 individuals.

The data are a modified and partly simulated version of the data set used by Eichinger et al. (Eichinger S, Heinze G, Jandeck LM, Kyrle P (2010). Risk Assessment of Recurrence in Patients With Unprovoked Deep Vein Thrombosis or Pulmonary Embolism - The Vienna Prediction Model. Circulation, 121(14): 1630-1636.), and are available under a GPL-2 license.
Usage

```r
data(deepvein)
```

Format

The data frame contains observations of 929 individuals and the following variables:

- **pnr**: patient number.
- **time**: time to recurrence of thrombosis or end of study.
- **status**: = 1 recurrence of thrombosis.
- **sex**: gender.
- **fiimut**: factor II G20210A mutation.
- **fvleid**: factor V Leiden mutation.
- **log2ddim**: log2-transformed d-dimer.
- **bmi**: body mass index.
- **durther**: duration of anticoagulation therapy.
- **age**: age in years.
- **loc**: location of first thrombosis: pulmonary embolism (PE), distal, or proximal deep vein thrombosis.

References

Examples

```r
data("deepvein")
summary(deepvein)

library("survival")
deepvein$loc <- relevel(deepvein$loc, ref = "distal")
fitfull <- coxph(Surv(time, status) ~ sex + fiimut + fvleid + log2ddim +
                 bmi + durther + age + loc, data = deepvein, x = TRUE)
summary(fitfull)

shrink(fitfull, type = "global", method = "dfbeta")
shrink(fitfull, type = "parameterwise", method = "dfbeta")
shrink(fitfull, type = "parameterwise", method = "dfbeta",
       join = list(c("locproximal", "locPE")))

#shrink(fitfull, type = "global", method = "jackknife")
#shrink(fitfull, type = "parameterwise", method = "jackknife")
#shrink(fitfull, type = "parameterwise", method = "jackknife",
#  join = list(c("locproximal", "locPE")))
```
backward elimination based on AIC
fitselect <- step(fitfull, direction = "backward")
summary(fitselect)

shrink(fitselect, type = "global", method = "dfbeta")
shrink(fitselect, type = "parameterwise", method = "dfbeta")
shrink(fitselect, type = "parameterwise", method = "dfbeta",
 join = list(c("locproximal", "locPE")))

#shrink(fitselect, type = "global", method = "jackknife")
#shrink(fitselect, type = "parameterwise", method = "jackknife")
#shrink(fitselect, type = "parameterwise", method = "jackknife",
join = list(c("locproximal", "locPE")))

predict.shrink

Predict Method for Objects of Class shrink

Description

Obtains predictions from shrunken regression coefficients from a fit object of class shrink. This class of objects is returned by the shrink function. Objects of this class have methods for the functions print, predict, and coeff.

Usage

```r
## S3 method for class 'shrink'
predict(object, newdata = NULL, type = c("link", "response", "lp", "risk",
                          "expected", "terms"), terms = NULL, na.action = na.pass, collapse,
                          safe = FALSE, ...)```

**Arguments**

- `object`: an object of class shrink.
- `newdata`: a data frame for which predictions are obtained, otherwise predictions are based on the data used in the fit object.
- `type`: the type of prediction required.
- `terms`: with type = "terms" by default all terms are returned. A character vector specifies which terms are to be returned.
- `na.action`: function determining what should be done with missing values in newdata. The default is to include all observations.
- `collapse`: if family = coxph, an optional vector of subject identifiers. If specified, the output will contain one entry per subject rather than one entry per observation.
- `safe`: option from predict.mfp.
- `...`: additional arguments to be passed to methods.
predict.shrink

Value
A vector or matrix of predictions.

fit predictions.

Author(s)
Daniela Dunkler, Georg Heinze

See Also
shrink

Examples
library("mfp")
data("GBSG")
dat <- GBSG
set.seed(79)
dat <- dat[sample(seq_len(nrow(dat)), size = 400, replace = FALSE),]

fit1 <- mfp(Surv(rfst, cens) ~ fp(age, df = 4, select = 0.05) +
            fp(prm, df = 4, select = 0.05), family = cox, data = dat)

dfbeta.global <- shrink(fit1, type = "global", method = "dfbeta")
dfbeta.pw <- shrink(fit1, type = "parameterwise", method = "dfbeta")
dfbeta.join <- shrink(fit1, type = "parameterwise", method = "dfbeta",
                join=list(c("age.1", "age.2"))

# unshrunken
plot(20:80, predict(fit1, newdata = data.frame(age = 20:80, prm = 0), type = "lp") -
     predict(fit1, newdata = data.frame(age = 50, prm = 0), type = "lp"),
     xlab = "Age", ylab = "Log hazard relative to 50 years", type = "l", lwd = 2)

# globally shrunken
lines(20:80, predict(dfbeta.global,newdata = data.frame(age = 20:80, prm = 0), type = "lp") -
      predict(dfbeta.global, newdata = data.frame(age = 50, prm = 0), type = "lp"),
      lty = 4, col = "blue", lwd = 2)

# jointly shrunken
lines(20:80, predict(dfbeta.join, newdata = data.frame(age = 20:80, prm = 0), type = "lp") -
      predict(dfbeta.join, newdata = data.frame(age = 50, prm = 0), type = "lp"),
      lty = 3, col = "red", lwd = 2)

# parameterwise shrunken
lines(20:80, predict(dfbeta.pw, newdata = data.frame(age = 20:80, prm = 0), type = "lp") -
      predict(dfbeta.pw, newdata =data.frame(age = 50, prm = 0), type = "lp"),
      lty = 2, col = "green", lwd = 2)

legend("topright", lty = c(1, 4, 3, 2), legend = c("No", "Global", "Joint", "Parameterwise"),
title = "SHRINKAGE", inset = 0.01, bty = "n", col = c("black", "blue", "red", "green"),
lwd = 2)
print.shrink  

Print Method for Objects of Class shrink

Description

This class of objects is returned by the shrink function. Objects of this class have methods for the functions print, predict, and coeff.

Usage

## S3 method for class 'shrink'
print(x, ...)

Arguments

x  
object of class shrink.

...  
further arguments.

Author(s)

Daniela Dunkler, Georg Heinze

See Also

shrink, coef.shrink

shrink  

Global, Parameterwise, and Joint Shrinkage of Regression Coefficients

Description

Obtain global, parameterwise, and joint post-estimation shrinkage factors for regression coefficients from fit objects of class lm, class glm with family = c("gaussian", "binomial"), class coxph, or class mfp with family = c(cox, gaussian, binomial).

Usage

shrink(fit, type = "parameterwise", method = "jackknife", join = NULL)
Arguments

fit a fit object of class `lm`, `glm`, `coxph` or `mfp`. The fit object must have been called with `x = TRUE` (and `y = TRUE` in case of `lm`).

type of shrinkage, either "parameterwise" (or "p"; default) or "global" (or "g") shrinkage.

method of shrinkage estimation, either "jackknife" (or "j"; default, based on leave-one-out resampling) or "dfbeta" (or "d"; excellent approximation based on DFBETA residuals).

join compute optional joint shrinkage factors for sets of specified columns of the design matrix, if `type = "parameterwise"`. See details.

Details

While global shrinkage modifies all regression coefficients by the same factor, parameterwise shrinkage factors differ between regression coefficients. With highly correlated or semantically related variables, such as several columns of a design matrix describing a nonlinear effect, parameterwise shrinkage factors are not interpretable. Joint shrinkage of a set of columns of the design matrix will give one common shrinkage factor for this set.

Joint shrinkage factors may be useful when analysing highly correlated and/or semantically related columns of the design matrix, such as dummy variables corresponding to a categorical explanatory variable with more than two levels, two variables and their pairwise interaction term, or several transformations of an explanatory variable enabling estimation of nonlinear effects. The analyst can define such 'joint' shrinkage factors by specifying the `join` option if `type = "parameterwise"`. `join` expects a list with at least one character vector including the names of the columns of the design matrix for which a joint shrinkage factor is requested; e.g. `join = list(c("dummy1", "dummy2", "dummy3"), c("main1", "main2", "interaction"), c("varX.fp1", "varX.fp2"))`.

Shrink also works for models incorporating restricted cubic splines computed with the `rcs` function from the `rms` library. A joint shrinkage factor of variable `varX` transformed with `rcs` can be obtained by `join = list(c("varX"))`.

For fit objects of class `coxph` or `glm` with `family = "binomial"` the computational effort of estimating shrinkage factors may be greatly reduced by using `method = "dfbeta"` instead. However, for (very) small data sets `method = "jackknife"` may be of advantage, as the use of DFBETA residuals may underestimate the influence of some highly influential observations.

A shrunken intercept is estimated as follows: For all columns of the design matrix except for the intercept the shrinkage factors are multiplied with the respective regression coefficients and a linear predictor is computed. Then the shrunken intercept is estimated by modeling `fit$y ~ offset(linear predictor)`.

For regression models without an intercept, i.e. fit objects of class `coxph`, with `type = "parameterwise"`, the shrunken regression coefficients can be directly estimated. This postfit is retained in the `$postfit` slot of the shrink object.

Value

Shrink returns an object with the following components:

`shrinkage` a vector of shrinkage factors of regression coefficients.
vcov.shrinkage  a covariance matrix of shrinkage factors.
shrunken  a vector with the shrunken regression coefficients.
postfit  an optional postfit model with shrunken regression coefficients and associated standard errors if type = "parameterwise" and join = NULL.
fit  the original (unshrunken) fit object.
type  the requested shrinkage type.
method  the requested shrinkage method.
call  the function call.

Note
For fit objects of class mfp with family = binomial or gaussian the regression coefficients of fit (obtained by coef(fit)) and fit$fit(coef(fit$fit)) may not always be identical, because of mfp's pretransformation applied to the explanatory variables in the model. The shrink function uses the regression coefficients from fit$fit which correspond to the pretransformed explanatory variables.

Author(s)
Daniela Dunkler, Georg Heinze

References

See Also
coef.shrink, predict.shrink, print.shrink

Examples
```r
Example with mfp (family = cox)
library("mfp")
data("GBSG")
fit1 <- mfp(Surv(rfst, cens) ~ fp(age, df = 4, select = 0.05) +
fp(prm, df = 4, select = 0.05), family = cox, data = GBSG)

shrink(fit1, type = "global", method = "dfbeta")

dfbeta.pw <- shrink(fit1, type = "parameterwise", method = "dfbeta")
dfbeta.pw
cov2cor(dfbeta.pw$vcov.shrinkage)
sqrt(diag(dfbeta.pw$vcov.shrinkage))

shrink(fit1, type = "parameterwise", method = "dfbeta",
join = list(c("age.1", "age.2")))
```
# Shrinkage estimation and inference

```r
Example with rcs
library("rms")
fit2 <- coxph(Surv(rfst, cens) ~ rcs(age) + rcs(prm), data = GBSG, x = TRUE)

shrink(fit2, type = "global", method = "dfbeta")
shrink(fit2, type = "parameterwise", method = "dfbeta")
shrink(fit2, type = "parameterwise", method = "dfbeta",
join = list(c("age"), c("prm")))
```

---

```r
Example with glm & mfp (family=binomial)
set.seed(888)
intercept <- 1
beta <- c(0.5, 1.2)
n <- 1000
x1 <- rnorm(n, 1,1)
x2 <- rbinom(n, 1, 0.3)
prob <- exp(linpred)/(1 + exp(linpred))
runis <- runif(n,0,1)
ytest <- ifelse(runis < prob,1,0)
simdat <- data.frame(cbind(y = ifelse(runis < prob, 1, 0), x1, x2))

fit2 <- glm(y ~ x1 + x2, family = binomial, data = simdat, x = TRUE)
summary(fit2)

shrink(fit2, type = "global", method = "dfbeta")
shrink(fit2, type = "parameterwise", method = "dfbeta")
shrink(fit2, type = "parameterwise", method = "dfbeta", join = list(c("x1", "x2"))))
```

---

```r
Examples with glm & mfp (family=gaussian) and lm
utils::data("Pima.tr", package="MASS")
utils::data("Pima.te", package="MASS")
Pima <- rbind(Pima.te, Pima.tr)
Pima$type2 <- as.numeric(Pima$type)-1
fit3 <- mfp(type2 ~ npreg + glu + bmi + ped + fp(age, select = 0.05),
family = binomial, data = Pima)

shrink(fit3, type = "global", method = "dfbeta")
shrink(fit3, type = "parameterwise", method="dfbeta")
```

---

```r
Examples with glm & mfp (family = poisson) and glm
utils::data("anorexia", package = "MASS")
contrasts(anorexias$Treat) <- contr.treatment(3, base = 2)
```
fit4 <- glm(Postwt ~ Prewt + Treat, family = gaussian, data = anorexia, x = TRUE)
fit4

shrink(fit4, type = "global", method = "dfbeta")
shrink(fit4, type = "parameterwise", method = "dfbeta")
shrink(fit4, type = "parameterwise", method = "dfbeta",
       join = list(c("Treat1", "Treat3")))

fit5 <- lm(Postwt ~ Prewt + Treat, data = anorexia, x = TRUE, y = TRUE)
fit5

shrink(fit5, type = "global", method = "dfbeta")
shrink(fit5, type = "parameterwise", method = "dfbeta")
shrink(fit5, type = "parameterwise", method = "dfbeta",
       join = list(c("Treat1", "Treat3")))

utils::data("GAGurine", package = "MASS")
fit6 <- mfp(Age ~ fp(GAG, select = 0.05), family = gaussian, data = GAGurine)
fit6

shrink(fit6, type = "global", method = "dfbeta")
shrink(fit6, type = "parameterwise", method = "dfbeta")
shrink(fit6, type = "parameterwise", method = "dfbeta",
       join = list(c("GAG.1", "GAG.2")))
Index

*Topic **datasets**
  deepvein, 4

*Topic **models**
  shrink, 8
  shrink-package, 2

*Topic **nonlinear**
  shrink, 8
  shrink-package, 2

*Topic **package**
  shrink-package, 2

*Topic **regression**
  shrink, 8
  shrink-package, 2

*Topic **survival**
  shrink, 8
  shrink-package, 2

*Topic **utilities**
  coef.shrink, 3, 4, 8, 10
  predict.shrink, 3, 6, 10
  print.shrink, 3, 4, 8, 10

coef.shrink, 3, 4, 8, 10

deepvein, 4

predict.shrink, 3, 6, 10
print.shrink, 3, 4, 8, 10

shrink, 3, 4, 7, 8, 8
shrink-package, 2