Package ‘tigerstats’

March 24, 2014

Type Package

Title R for Elementary Statistics

Version 0.1.3

Date 2014-03-24

Author Rebekah Robinson <rebekah_robinson@georgetowncollege.edu> and Homer White <hwhite@georgetowncollege.edu>

Maintainer Homer White <hwhite@georgetowncollege.edu>

Description This package consists of datasets and functions that are useful in the teaching of statistics at an elementary level to students who may have little or no previous experience with the command line. The functions for elementary inferential procedures follow a uniform interface for user input. The package is typically used with package mosaic but runs independently of it. Some of the functions are instructional applets that can only be run on the RStudio IDE with RStudio’s package manipulate loaded. The RStudio IDE is freely available (www.rstudio.org), and includes package manipulate.

License GPL (>= 3)

Depends lattice

Imports MASS

Suggests mosaic, manipulate

LazyLoad yes

LazyData yes

NeedsCompilation no

Repository CRAN

Date/Publication 2014-03-24 17:03:39
R topics documented:

tigerstats-package ... 4
alcohol .. 4
attitudes ... 5
barchartGC ... 6
beans ... 7
BinomNorm ... 8
BinomSkew ... 8
binomtestGC ... 9
chisq.testGC .. 10
ChisqSimSlow ... 11
chisqtestGC .. 12
chugtime ... 13
CIMean ... 14
CIProp ... 14
colPerc .. 15
deathpen .. 16
DtrellHist ... 16
DtrellScat .. 17
EmpRule .. 18
EmpRuleGC ... 18
FakeSchool ... 19
FindRegLine ... 20
fuel ... 20
galton ... 21
gcfeeling .. 21
gcstudents ... 22
gss02 ... 22
gss08 ... 23
gss2012 .. 24
hair_and_act ... 24
handheight ... 25
hanford1 .. 25
hanford2 .. 26
imagpop .. 26
iqsiblings ... 27
knifeorgunblock ... 27
labels .. 28
ledgejump ... 28
lmGC ... 29
m111survey .. 29
m111surveyfa12 ... 30
m111surveyfa13 ... 31
MeanSampler .. 32
music ... 33
napkins .. 33
nonresponse .. 34
R topics documented:

nosmokeday .. 34
oldfaithful .. 35
ostrichtemp ... 35
Ovarian .. 36
ParseFormula .. 36
pbinomGC ... 37
pchisqGC ... 38
pennstate1 .. 39
plot.GClm ... 39
pnormGC ... 40
Points2Watch .. 41
popsamp ... 42
predict.GClm .. 42
print.GClm ... 43
print.gcp1test ... 44
print.gcp2test ... 44
print.GCttest ... 45
PropSampler ... 45
proptestGC ... 46
ptGC ... 48
pushups ... 49
RandomExp .. 49
RectShade .. 50
RegEstimate .. 51
rowPerc .. 51
saltmarsh .. 52
SampDist2Means 53
SampDist2Props 54
SampDistMean .. 55
sat .. 56
seals ... 56
ShallowReg ... 57
SimpleRandom ... 58
Skewer ... 58
SlowGoodness .. 59
SmallExp .. 60
stumps ... 60
temperature .. 61
tExplore .. 61
theme.rpres .. 62
themerpres .. 62
tornado ... 63
tSampler ... 63
ttestGC .. 64
Type12Errors .. 66
ucdavis1 ... 66
udavis2 ... 67
UnderShade .. 68
tigerstats-package \hspace{1em} \textit{R for Elementary Statistics}

\begin{description}
\item[Description] Datasets and functions useful for teaching elementary statistics.
\item[Details]
\begin{itemize}
\item Package: tigerstats
\item Type: Package
\item Version: 0.1.3
\item Date: 2014-03-24
\item License: GPL (>=3)
\end{itemize}
\item[Author(s)] Homer White and Rebekah Robinson
Maintainer: Homer White <hwhite@georgetowncollege.edu>
\end{description}

\begin{description}
\item[alcohol] \hspace{1em} \textit{Alcohol at Georgetown College}
\item[Description] Alcohol policy violations on the Georgetown College campus over several years.
\item[Format] A data frame with 10 observations on the following 4 variables.
\begin{itemize}
\item \textbf{year} Academic year ending with Spring of the given year.
\item \textbf{enrollment} Full-time equivalent enrollment.
\item \textbf{writeups} Number of write-ups for alcohol violations.
\item \textbf{writeups.per.100} Number of writeups per 100 students.
\end{itemize}
\end{description}
Source

Collected by MAT 111 students as a project.

Description

Study conducted in November 2001 by students in MAT 111. Subjects were 267 Georgetown College students. Not all subjects got the same survey form.

Format

A data frame with 268 observations on the following 8 variables.

- **def.race**: Suggested race of the defendant in the survey form.
- **vic.race**: Suggested race of the victim in the survey form.
- **conc.situation**: Scenario described in the in the "rock concert" question on the survey form.
- **sentence**: Sentence, in years, recommended for the defendant.
- **conc.decision**: Whether or not the subject chose to buy a ticket (or buy another ticket).
- **year**: Class rank of the subject.
- **sex**: a factor with level Sex of the survey participant.
- **major**: possible values: humanities math. sci pre.prof social. sci Type of major the subject intends.

Details

Here is a sample survey form, with variants noted.

Attitudes Survey

Crime: You are on a jury for a manslaughter case in Lewistown, PA. The defendant has been found guilty, and in Pennsylvania it is part of the job of the jury to recommend a sentence to the judge. The facts of the case are as follows. The defendant, Tyrone Marcus Watson, a 35-year old native of Lewistown, was driving under the influence of alcohol on the evening of Tuesday July 17, 2001. At approximately 11:00 PM Watson drove through a red light, striking a pedestrian, Betsy Brockenheimer, a 20-year old resident of Lewistown. Brockenheimer was taken unconscious to the hospital and died of her injuries about one hour later. Watson did not flee the scene, nor did he resist arrest.

The prior police record for Mr. Watson is as follows: two minor traffic violations, and one previous arrest, five years ago, for DUI. No one was hurt in that incident.

Watson has now been convicted of DUI and manslaughter. The minimum jail term for this combination of offenses is two years; the maximum term is fifty years. In the blank below, write a number from 2 to 50 as your recommended length of sentence for Tyrone Marcus Watson.
In the question above, name of defendant could vary: either William Shane Winchester or Tyrone Marcus Watson. The name of the victim could also vary: either Betsy Brockenheimer or Latisha Dawes.

Spending Habits

You have purchased a $30 ticket to see a rock concert in Rupp Arena. When you arrive at the Arena on the night of the performance, you find that you have lost the ticket. You have no receipt, so it will not be possible to see the concert unless you purchase another ticket. Would you purchase another ticket? Circle below.

YES NO

[In other forms, the question above could have been: You plan to see a rock concert in Rupp Arena. Tickets for the performance are $30. When you arrive at the Arena on the night of the performance, you find that you have lost two bills from your purse or wallet: a ten and a twenty. Would you buy the ticket anyway?]

Respondent Data

I am (circle one): freshman sophomore junior senior

I am (circle one) male female

(Optional) My intended major is: _____________________

Source

Georgetown College

barchartGC

Easy barcharts from raw and tabular data

Description

Wrapper for barchart in package lattice. Creates a barchart from raw data, using formula-data syntax similar to that of xtabs. There are very few options.

Usage

barchartGC(x, data=NULL, type="frequency", main=NULL)

Arguments

x Either a formula or a table. If formula, it must be of the form ~var or ~var1+var2.

data Usually a data frame that supplies the variables in x.

type Possible values are "frequency" and "percent".

main An optional title

Value

A trellis object describing the barchart.
Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

barchart of counts for one factor variable:
barchartGC(~sex,data=m11survey)

barchart with percentages:
barchartGC(~sex,data=m11survey,main="Distribution of Sex")

barchart of counts, to study the relationship between two factor variables:
barchartGC(~sex+seat,data=m11survey)

percentage barchart, two factor variables:
barchartGC(~sex+seat,data=m11survey,type="percent")

From tabulated data:
sexseat <- xtabs(~sex+seat,data=m11survey)
barchartGC(sexseat,type="percent",main="Sex and Seating Preference")

Beans

Description

Experiment performed at UC-Davis; fifteen students participated. Each student was asked to place as many beans into a cup as he/she could, in 15 seconds. Each student performed this task once with the dominant hand, and once with the nondominant hand, but the order of performance was randomized. The purpose of the study was to see whether manual dexterity was better for the dominant hand. Terminology: your dominant hand is the hand you use the most.

Format

A data frame with 15 observations on the following 3 variables.

- **Dom** Number of beans placed into cup with the dominant hand.
- **NonDom** Number of beans placed with the nondominant hand.
- **Diff** Difference in number of beans placed (dominant hand minus nondominant hand).

Source

BinomNorm

Binomial Distributions With Normal Approximation

Description
An app to investigate the binomial family.

Usage
BinomNorm()

Value
no value. Graphical side-effects only.

Author(s)
Homer White (hwhite0@georgetowncollege.edu)

Examples

```r
## Not run:
if (require(manipulate)) BinomNorm()

## End(Not run)
```

BinomSkew

Skewness in the Binomial Family of Distributions

Description
An app to investigate how skewness in a binomial distribution vanishes when np is large enough. Sample size is set at n = 50, but the user can vary p with a slider.

Usage
BinomSkew()

Value
no value. Graphical side-effects only.

Author(s)
Homer White (hwhite0@georgetowncollege.edu)
Examples

```r
## Not run:
if (require(manipulate)) BinomSkew()

## End(Not run)
```

Description

Wrapper for `binom.test` in package `stats`. Employs the binomial distribution in inferential procedures for a single proportion.

Usage

```r
binomtestGC(x,n=numeric(),p=NULL,data,alternative="two.sided",
success="yes",conf.level=0.95,graph=FALSE,verbose=TRUE)
```

Arguments

- `x`: Either a formula or a numeric vector. If formula, it must be of the form `~x` indicating the single variable under study. When summary data are provided, `x` is a numeric vector of success counts.
- `n`: When not empty, this is a numeric vector giving the size of the sample.
- `p`: Specifies Null Hypothesis value for population proportion. If not set, no test is performed.
- `data`: Data frame that supplies the variable `x`.
- `alternative`: "two.sided" requests computation of a two-sided P-value; other possible values are "less" and "greater".
- `success`: When `x` is a formula, this argument indicates which value of variable `x` is being counted as a success. When working with formula-data input the value of this parameter MUST be set, even when the variable has only two values.
- `conf.level`: Number between 0 and 1 indicating the confidence-level of the interval supplied.
- `graph`: If TRUE, plot graph of P-value. Ignored if no test is performed.
- `verbose`: Determines whether to return lots of information or only the basics

Value

Output to console. Future versions may return an object, and include a print method.

Author(s)

Homer White <hwhite@georgetowncollege.edu>
Examples

```r
# Confidence interval only:
binomtestGC(~sex, data=m11survey, success="female")

# Confidence interval and two-sided test, Null Hypothesis p = 0.5:
binomtestGC(~sex, data=m11survey, success="female", p=0.5)

# For confidence level other than 95%, use conf.level argument.
# For 90% interval:
binomtestGC(~sex, data=m11survey, success="female", conf.level=0.90)

# For one-sided test, set alternative argument as desired:
binomtestGC(~sex, data=m11survey, p=0.50,
    success="female", alternative="greater")

# Summary data:
# In one sample, 40 successes in 100 trials. Testing whether p = 0.45.
binomtestGC(40, 100, p=0.45)
```

chisq.testGC
Chi-Square Test (GC version)

Description

Perform chi-square test, either goodness of fit or test for association. Enter either formula-data input or a summary table. Simulation is optional.

Usage

```r
chisq.testGC(x, data=NULL, p=NULL, graph=FALSE, simulate.p.value=FALSE, B=2000, verbose=TRUE)
```

Arguments

- **x**: Could be a formula. If so, either ~var (for goodness of fit) or ~var1+var2 (for test for association). Otherwise either a table, matrix or vector of summary data.

- **data**: dataframe supplying variables for formula x.

- **p**: For goodness of fit, a vector of probabilities. This will be automatically scaled so as to sum to 1. Negative elements result in an error message.

- **graph**: produce relevant graph for P-value (chi-square curve or histogram of simulation results). Ignored if user requests R’s resampling routines (see below).

- **simulate.p.value**: If FALSE, use a chi-square distribution to estimate the P-value. Other possible values are "random" and "fixed" and TRUE. Random effects are suitable for resampling when the data are a random sample from a population. Fixed effects assume that the values of the explanatory variable (row variable for table, var1 in formula ~var1+var2) remain fixed in resampling, and values of response variable are random with null distribution estimated from the data. When set to TRUE, we use R’s resampling routines.
ChisqSimSlow

number of resamples to take.

If TRUE, include lots of information in the output.

No value, just side effects. Future versions may define an S3 object, with print method.

Deprecated in favor of chisqtestGC. Will be removed eventually.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
chisq.testGC(~seat,data=mllisurvey,p=c(1/3,1/3,1/3))
chisq.testGC(~sex+seat,data=mllisurvey)

WeBe <- xtabs(~weather+crowd.behavior,data=ledgejump)
chisq.testGC(WeBe,simulate.p.value="fixed",B=2500)
```

ChisqSimSlow

Chi Square Resampler (One at a Time)

Description

An app to illustrate use of the chi-square statistic to test for a relationship between two categorical variables. The P-value is computed by resampling, and the resamples are done one at a time. A histogram of resampled chi-square statistics is displayed after each resample, and summary information is output to the console.

Usage

```r
ChisqSimSlow(form,data,effects="random")
```

Arguments

- **form**: a formula of the form ~x+y. When using fixed effects (see below for explanation), x should be the variable that is considered the predictor variable.
- **data**: A data frame from which x and y are drawn.
- **effects**: When effects="fixed", the resampling is performed under the condition that the row sums in the resampled two-way table (with x for rows) are the same as the row sums in the two-way table based on the original data. When effects="random", then both row and column sums in the resampled table may vary: only the sum of the counts is constant. (Note: in the resampling procedure for chisq.test in the stats package of R, both row and column sums are required to equal the corresponding sums for the original data.)
chisqtestGC

Value

Graphical and numerical output

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) ChisqSimSlow(~weather+crowd.behavior,data=ledgejump,effects="fixed")
## End(Not run)
```

<table>
<thead>
<tr>
<th>chisqtestGC</th>
<th>Chi-Square Test (GC version)</th>
</tr>
</thead>
</table>

Description

Perform chi-square test, either goodness of fit or test for association. Enter either formula-data input or a summary table. Simulation is optional.

Usage

```r
chisqtestGC(x, data = NULL, p = NULL, graph = FALSE, simulate.p.value = FALSE, B = 2000, verbose = TRUE)
```

Arguments

- `x` Could be a formula. If so, either ~var (for goodness of fit) or ~var1+var2 (for test for association). Otherwise either a table, matrix or vector of summary data.
- `data` dataframe supplying variables for formula `x`.
- `p` For goodness of fit, a vector of probabilities. This will be automatically scaled so as to sum to 1. Negative elements result in an error message.
- `graph` produce relevant graph for P-value (chi-square curve or histogram of simulation results). Ignored if user requests R’s resampling routines (see below).
- `simulate.p.value` If FALSE, use a chi-square distribution to estimate the P-value. Other possible values are "random" and "fixed" and TRUE. Random effects are suitable for resampling when the data are a random sample from a population. Fixed effects assume that the values of the explanatory variable (row variable for table, var1 in formula ~var1+var2) remain fixed in resampling, and values of response variable are random with null distribution estimated from the data. When set to TRUE, we use R’s resampling routines.
- `B` number of resamples to take.
- `verbose` If TRUE, include lots of information in the output.
Value

No value, just side effects. Future versions may define an S3 object, with print method.

Note

Deprecated in favor of chisqtestGC. Will be removed eventually.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

Goodness of fit test for one factor variable:
chisqtestGC(~seat, data=m111survey, p=c(1/3, 1/3, 1/3))

Test for relationship between two factor variables:
chisqtestGC(~sex+seat, data=m111survey)

You can input a two-way table directly into chisqtestGC():
SexSeat <- xtabs(~sex+seat, data=m111survey)
chisqtestGC(SexSeat)

For small datasets, several types of simulation are possible, e.g.:
chisqtestGC(~weather+crowd.behavior, data=ledgejump, simulate.p.value="fixed", B=2500)

For less output, set argument verbose to FALSE:
chisqtestGC(~sex+seat, data=m111survey, verbose=FALSE)

chugtime

<table>
<thead>
<tr>
<th>chugtime</th>
<th>Time to Chug</th>
</tr>
</thead>
</table>

Description

College-aged males chugging a 12-ounce can of a certain beverage.

Format

A data frame with 13 observations on the following 2 variables.

Weight Weight of the subject (in pounds).

ChugTime How long (in seconds) the subject requires to drink the beverage.

Source

CIMean

Confidence Intervals (for one population mean)

Description

An app to investigate how sample size and confidence level affect the width of a confidence interval. A sample is drawn from the input population and a confidence interval for the population mean is calculated. The kernel density plot for the population and the histogram for each new sample are plotted, along with the confidence interval. Summary information is output to the console to tally the number of times the computed confidence interval covers the true population mean and how many times it misses. There is an option to draw 100 or 1000 samples at a time.

Usage

CIMean(form, data)

Arguments

form a formula of the form ~var.
data A data frame from which var is drawn.

Value

Graphical and numerical output

Author(s)

Rebekah Robinson <rebekah_robinson@georgetowncollege.edu>

Examples

Not run:
if (require(manipulate)) CIMean(~height, data=imagpop)

End(Not run)

CIProp

Confidence Intervals (for one population proportion)

Description

An app to investigate how many times a confidence interval for one population proportion captures the true population parameter. The true population proportion is plotted as a vertical red line and the user can visually see how changes to the sample, population proportion, sample size, and confidence level affect the width of the confidence interval. Summary information is output to the console to tally the number of times the computed confidence interval covers the true population mean and how many times it misses.
Usage

\texttt{CIProp()}

Value

Graphical and numerical output

Note

Uses manipulate from RStudio

Author(s)

Rebekah Robinson \textless rebekah_robinson@georgetowncollege.edu\textgreater

Examples

\begin{verbatim}
Not run:
if (require(manipulate)) CIProp()

End(Not run)
\end{verbatim}

\begin{verbatim}
mytable <- xtabs(~weather+crowd.behavior,data=ledgejump)
colPerc(mytable)
\end{verbatim}

colPerc

\textit{Column Percents}

Description

Computes column percentages for a given two-way table.

Usage

\texttt{colPerc(tab)}

Arguments

\begin{description}
\item[tab] \begin{description}
\item[A two way table, e.g., the result of \texttt{xtabs(~var1+var2, data=DataFrame)}.]
\end{description}
\end{description}

Value

An object of class \texttt{table}, giving column percentages for the input table.

Author(s)

Homer White \textless hwhite0@georgetowncollege.edu\textgreater

Examples

\begin{verbatim}
MyTable <- xtabs(~weather+crowd.behavior, data=ledgejump)
colPerc(MyTable)
\end{verbatim}
The Death Penalty and Race

Description

A dataset recreated from summary data that describes relationships between race of defendant, race of victim, and outcome of trial in a number of capital cases in Florida in 1976-1977. The variables are as follows:

- defrace. Race of the defendant in the capital case.
- vicrace. Race of the victim.
- death. Whether or not the defendant in the case received the death penalty.

Format

A data frame with 326 rows and 3 variables

Source

Dynamic Trellising (Histogram)

Description

A manipulative app that facilitates exploration of the distribution of a single numerical variable, conditioned upon the values of either a numerical variable or a factor.

Usage

`DtrellHist(form, data)`

Arguments

- `form` a formula of the form `~var|cond`. `var` must be numeric; `cond` may be either numeric or factor.
- `data` A data frame from `var` and `cond` are drawn.

Value

Graphical output.
Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) dtrellHist(~dist|speed, data=cars)
## End(Not run)
```

DtrellScat

Dynamic Trellising (Scatterplot)

Description

An app to facilitate exploration of the relationship between two numerical variables, conditional upon the values of a third variable.

Usage

```r
DtrellScat(form, data)
```

Arguments

- **form**: A formula of the form `y~x|c`. All three variables in the formula should be from the data frame `data`. `c` may be a factor or numerical.
- **data**: A data frame.

Value

Graphical and numerical output.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) DtrellScat(sat~salary|frac, data=sat)
## End(Not run)
```
EmpRule

Empirical Rule

Description
An app to investigate how the Empirical Rule applies to symmetric data and skewed data. The user can select whether they want to view a histogram of symmetric data or skewed data. Vertical bars are also plotted to signify one, two, and three standard deviations from the mean. Summary data is output to the console giving the proportion of the histogram that falls within one, two, and three standard deviations of the mean.

Usage
EmpRule()

Value
Graphical and numerical output

Author(s)
Rebekah Robinson <rebekah_robinson@georgetowncollege.edu>

Examples
Not run:
if (require(manipulate)) EmpRule()

End(Not run)

EmpRuleGC

Graphical Calculator for the Empirical Rule

Description
An app to facilitate visual understanding of Empirical Rule approximations of probabilities, percentages.

Usage
EmpRuleGC(mean=0,sd=1,xlab="x")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>Mean of the distribution</td>
</tr>
<tr>
<td>sd</td>
<td>Standard deviation of the distribution</td>
</tr>
<tr>
<td>xlab</td>
<td>x-axis label</td>
</tr>
</tbody>
</table>
Value

Returns no value. Used for the plotting side-effects.

Note

Uses manipulate in RStudio

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

```r
## Not run:
if(require(manipulate)) EmpRuleGC(mean=70, sd=3, xlab="Height (inches)")

## End(Not run)
```

FakeSchool An Imaginary School

Description

Hypothetical school, used for illustrative purposes

Format

A data frame with 28 observations on the following 5 variables.

- **Students** Name of each student
- **Sex** sex of the student
- **class** class rank of the student
- **GPA** grade point average
- **Honors** whether or not he student is in the Honors Program
FindRegLine

Find the Regression Line

Description

The regression minimizes the residual sum of squares (RSS). In this game, the player chooses slope and y-intercept of a line so as to approximate the regression line. The moveable line is set initially as a horizontal line with height equal to the mean of the y-coordinates of the scatterplot, so initially the residual sum of squares equals the total sum of squares (TSS). The player’s score is the sum of the number of turns taken and the difference between the current RSS and the regression line’s RSS (as a percentage of TSS-RSS for regression line). The aim is to lower one’s score.

Usage

FindRegLine

Value

Graphical and numerical output.

Note

Requires package manipulate, available only in RStudio.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) FindRegLine()

## End(Not run)
```

fuel

Speed and Fuel Efficiency (British Ford Escort)

Description

A British Ford Escort was driven along a prescribed course. Each drive was done at a different speed, and the fuel efficiency was recorded for each drive.
galton

Format

A data frame with 15 observations on the following 2 variables.

- **speed** in kilometers per hour.
- **efficiency** fuel efficiency, measured in liters of fuel required to travel 100 kilometers.

Source

The Basic Practice of Statistics, by Moore and McCabe.

Galton’s Father-Son Data

Description

Data on father-son pairs. Collected in 1885 by Francis Galton.

Format

A data frame with 1078 observations on the following 2 variables.

- **fheight** Height of the father, in inches.
- **sheight** Height of the son, in inches.

Feelings About Georgetown College

Description

Results of a survey conducted by Georgetown College students on 47 Georgetown College upper-class students.

Format

A data frame with 47 observations on the following 6 variables.

- **rating.fresh** how happy the subjects remembers being as a first-year student, on a scale of 1 to 10.
- **rating.js** how happy the subjects feels now, on a scale of 1 to 10.
- **greek** whether or not the subject belongs to a greek organization.
- **athlete** whether or not the subject is a varsity athlete
- **rating.diff** upper-level happiness rating minus remembered first-year rating
- **happier** whether or not subject feels happier now than as a first-year student

Source

MAT 111 at Georgetown College
Description
Data collected by GC students.

Format
A data frame with 62 observations on the following 4 variables.

- **height** height of the survey participant, in inches
- **GPA** grade-point average
- **enough_Sleep** Does the participant feel that he/she gets enough sleep?
- **sex** sex of the survey participant

Source
MAT 111 at Georgetown College

Description
The General Social Survey (GSS) is a nationwide poll that has been conducted since 1972 (semianually since 1994). Most interviews are done face-to-face. For further information, see below.

Format
A data frame with 2765 observations on the following 13 variables.

- **sex** a factor with levels Female Male
- **race** a factor with levels AfrAm Hispanic Other White
- **degree** a factor with levels Bachelor Graduate HighSchool JunColl NotHs
- **relig** a factor with levels Catholic Jewish Other Protestant
- **polparty** a factor with levels Democrat Independent Other Republican
- **cappun** a factor with levels Favor Oppose Whether or not the subject favors capital punishment.
- **tvhours** the subject estimates number of hours per day he or she watches TV.
- **marijuan** a factor with levels Legal NotLegal Whether or not subject believes that marijuana should be legalized.
- **owngun** a factor with levels No Yes. Does the subject own a gun?
- **gunlaw** a factor with levels Favor Oppose Whether or not the subject favors stricter gunlaws.
- **age** age of the subject
- **childidel** the ideal number of children the subject would like to have.
- **emailtime** estimated number of hours per week subject spends using email.
Source

Description

General Social Survey, 2008

Format

A data frame with 2023 observations on the following 12 variables.

- **sex** a factor with levels Female Male
- **race** a factor with levels AfrAm Other White
- **degree** a factor with levels Bachelor Graduate HighSchool JunColl NotHs
- **relig** a factor with levels Catholic Jewish None Other Protestant
- **polparty** a factor with levels Democrat Independent Other Republican
- **cappun** a factor with levels Favor Oppose
- **tvhours** a numeric vector
- **marijuan** a factor with levels Legal NotLegal
- **owngun** a factor with levels No Yes
- **gunlaw** a factor with levels Favor Oppose
- **age** a numeric vector
- **chldidel** a numeric vector

Source

References

For more information see gss02
gss2012
General Social Survey, 2012

Description

A selection of variables from the 2012 General Social Survey. The variables are as follows:

- **age.** Age of the subject.
- **sex.** Sex of the subject.
- **race.** Race of the subject.
- **polviews.** Subject’s political views.
- **relig.** Religion of the subject.
- **cappun.** Opinion on capital punishment.
- **owngun.** Whether or not one owns a gun.
- **emailhr.** Number of hours per week spent on email.
- **bigbang.** Whether or not subject believes the Big Bang theory is true.
- **premarsx.** Opinion on premarital sex.
- **pornlaw.** Should pornography be legal?
- **zodiac.** Sign of the Zodiac under which the subject was born.

Format

A data frame with 1976 rows and 12 variables

Source

hair_and_act
Hair Color and ACT Score

Description

A study performed by MAT 111 students at Georgetown College.

Format

A data frame with 100 observations on the following 3 variables.

- **sex** a factor with levels female male
- **hair.color** a factor with levels dark light
- **act** composite ACT score of subject.

Source

MAT 111 at Georgetown College
Description

Hand and handspan of a few subjects.

Format

A data frame with 167 observations on the following 3 variables.

- **Sex**: a factor with levels Female Male
- **Height**: height of subject, in inches.
- **HandSpan**: handspan of subject, in centimeters.

Source

Description

The station is located in Hanford, WA.

Format

A data frame with 27 observations on the following 2 variables.

- **year**: calendar year
- **temp**: average high temperature for that year.

Source

See http://www.hanford.gov/hms/
Description

The weather station is located in Hanford, WA. Note that this dataset is more complete than hanford1.

Format

A data frame with 66 observations on the following 2 variables.

- **year** calendar year
- **temp** average high temperature for that year.

Source

See www.hanford.gov/hms/

imagpop

An Imaginary Population

Description

An imaginary population, used for instructional purposes. The variables are as follows:

- **sex**. (male, female).
- **math**. Whether or not you were a mathematics major.
- **income**. Your annual income, rounded to the nearest $100.
- **cappun**. Opinion about the death penalty (favor, oppose).
- **height**. Height in inches.
- **idealheight**. The height you would like to be, in inches.
- **diff**. Idealheight - actual height.
- **kkardashtemp**. Your feelings about Kim Kardashian on a 0-100 scale (0=very cold, 100=very warm).

Format

A data frame with 10000 rows and 8 variables.
iqsiblings

Description

IQs of pairs of siblings.

Format

A data frame with 80 observations on the following 2 variables.

- **First** IQ of the older sibling.
- **Second** IQ of the younger sibling.

Source

William Harris, Georgetown College

knifeorgunblock

Description

What will make you yell louder: being killed with a knife or being killed with a gun? Results of an entirely imaginary experiment performed on very strange volunteers. Members of the Knife group are killed by a knife, and members of the Gun group are killed by a gun. The volume of the screams of each subject during slaying is recorded. In order to ensure that the two groups are similar with respect to how loud they can yell in the first place, subjects are blocked by whether or not they have participated in hog-hollering contests. After blocking, subjects are randomly assigned to groups.

Format

A data frame with 20 observations on the following 3 variables.

- **hoghollerer** a factor with levels no yes whether or not the subject competes in hog-hollerin’ contests
- **means** a factor with levels gun knife means by which subject is slain
- **volume** volume of expiring subject’s cries.

Source

A morbid imagination.
labels
Labels and Perception of Quality

Description

Students in MAT 111 performed an experiment to see whether the perception of the quality of peanut butter was affected by the labeling on the peanut butter jar. Each subject tasted from two jars, one of which was labeled Jiff, and the other of which was labeled Great Value (a cheaper brand). Unknown to the subjects, both jars contained Great Value peanut butter. Each subject rated the quality of the peanut butter on a scale of 1 to 10.

Format

A data frame with 30 observations on the following 3 variables.

- **jiffrating** rating subject gave to the PB in the jar with the Jiff label
- **greatvaluerating** rating subject gave to the PB in the jar with the Great Value label
- **sex** a factor with levels female male

Source

MAT 111 at Georgetown College

ledgejump
Crowd Behavior at Ledge-Jumping Incidents

Description

A dataset recreated from summary data describing the relationship between weather and crowd behavior during 21 recorded incidents in England, in which a (suicidal) person was contemplating jumping from a ledge or other high structure and a crowd gathered to watch. The variables are as follows:

- weather. Warm or cool, based on the time of year when the incident occurred.
- crowd.behavior. The crowd either baited the would-be jumper, or was polite.

Format

A data frame with 21 rows and 2 variables

Source

lmGC

Linear Regression

Description

Regression analysis (one numerical predictor variable) with simplified output. Wrapper function for `lm` in package `stats`.

Usage

```r
lmGC(formula, data, graph=FALSE, diag=FALSE)
```

Arguments

- `form` formula of form `y~x`, both variables numeric
- `data` dataframe supplying `y` and `x` above
- `graph` produce scatterplot with regression line
- `diag` produces diagnostic plots: density plot of residuals, and residuals vs. fits

Value

A list of class "GClm". Elements that may be queried include "slop", "intercept", "s" (residual standard error), "R^2" (unadjusted).

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
# To study the relationship between two numerical variables:
lmGC(fastest~GPA, data=m111survey, graph=TRUE)
```

m111survey

MAT 111 Survey

Description

Results of a survey of MAT 111 students at Georgetown College.

- height. How tall are you, in inches?
- ideal_ht. A numeric vector How tall would you LIKE to be, in inches?
- sleep. How much sleep did you get last night?
- fastest. What is the highest speed at which you have ever driven a car?
• weight_feel. How do you feel about your weight?
• love_first. Do you believe in love at first sight?
• extra_life. Do you believe in extraterrestrial life?
• seat. When you have a choice, where do you prefer to sit in a classroom?
• GPA. What is your college GPA?
• enough_Sleep. Do you think you get enough sleep?
• sex. What sex are you?
• diff. Your ideal height minus your actual height.

Format

A data frame with 71 rows and 12 variables

Source

Georgetown College, MAT 111.

Description

Results of a survey given at beginning of semester, to all students in MAT 111.

Format

A data frame with 89 observations on the following 14 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>height</td>
<td>Your height in inches.</td>
</tr>
<tr>
<td>ideal_ht</td>
<td>How tall you would LIKE to be, in inches.</td>
</tr>
<tr>
<td>sleep</td>
<td>How much sleep you got last night, in hours.</td>
</tr>
<tr>
<td>fastest</td>
<td>What is the highest speed at which you have ever driven a car (in mph)?</td>
</tr>
<tr>
<td>wt_feel</td>
<td>a factor with levels 1_underweight 2_about_right 3_overweight How do you feel about your weight?</td>
</tr>
<tr>
<td>love_first</td>
<td>a factor with levels no yes Do you believe in love at first sight?</td>
</tr>
<tr>
<td>et_life</td>
<td>a factor with levels no yes Do you believe in life on other planets?</td>
</tr>
<tr>
<td>seat</td>
<td>a factor with levels 1_front 2_middle 3_back When you have a choice, where do you prefer to sit in a classroom?</td>
</tr>
<tr>
<td>GPA</td>
<td>What is your current GPA?</td>
</tr>
<tr>
<td>engh_slp</td>
<td>a factor with levels no yes Do you think you get enough sleep?</td>
</tr>
<tr>
<td>sex</td>
<td>a factor with levels female male What sex are you?</td>
</tr>
</tbody>
</table>
anchor a factor with levels australia united_states (Anchor for the next question.) For the next question, either Australia or the US, along with its population, was given in the leadup information to the question. The "anchor" variable records which version of the question you were given.

canada "The population of country XXX is YYY million. About what is the population of Canada, in millions?" XXX was either the U.S. or Australia.

diff.ih.ah. Your ideal height minus your actual height.

Source

MAT 111 at Georgetown College

Description

Results of a survey given at beginning of semester, to all students in MAT 111.

Format

A data frame with 85 observations on the following 14 variables.

height Your height in inches.

ideal_ht How tall you would LIKE to be, in inches.

sleep How much sleep you got last night, in hours.

fastest What is the highest speed at which you have ever driven a car (in mph)?

weight_feel a factor with levels 1_underweight 2_about_right 3_overweight How do you feel about your weight?

love_first a factor with levels no yes Do you believe in love at first sight?

extra_life a factor with levels no yes Do you believe in life on other planets?

seat a factor with levels 1_front 2_middle 3_back When you have a choice, where do you prefer to sit in a classroom?

GPA What is your current GPA?

enough_Sleep a factor with levels no yes Do you think you get enough sleep?

sex a factor with levels female male What sex are you?

diff ideal height minus actual height

symbol a factor with levels a b (Anchor for the next question.) For the next question, either Australia or the US, along with its population, was given in the leadup information to the question. The "anchor" variable records which version of the question you were given. If "a", the population of Australia was given. If "b", the U.S. population was given.

pop_Canada "The population of country XXX is YYY million. About what is the population of Canada, in millions?" XXX was either the U.S. or Australia.
MeanSampler

Source

MAT 111 at Georgetown College

Description

An app to explore the sampling distribution of the sample mean. The user takes one sample at a time from a given population. Output to the console describes relevant features of the sample, and graphical output updates the empirical distribution of the sample mean.

Usage

MeanSampler(form, data, max.sample.size=30, show.sample=FALSE)

Arguments

form
an object of class formula, of the form ~x, where x is a numeric variable from the data frame supplied by:

data
A dataframe, representing the imaginary population.

max.sample.size
Maximum sample size on the slider.

show.sample
If TRUE, the complete sample will be output to the console, in addition to the summary information.

Value

Graphical and numerical output.

Note

Uses manipulate.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
data(imagpop)
if (require(manipulate)) MeanSampler(~income, data=imagpop)

## End(Not run)
```
Description

An experiment performed by a student at Georgetown College. Forty-four subjects were randomized into four groups. All subjects read an article; one group read in a silent environment, while the other three groups heard each three different genres of music. Each subject took a reading comprehension test afterward.

- sex a factor with levels Female Male
- year class rank of subject
- computer a numeric vector
- type type of music subject listened to while reading
- score number of questions correct on reading comprehension test

Format

A data frame with 44 observations on 4 variables.

Source

Matt Doolin, MAT 111 at Georgetown College

Description

Students at GC observed their fellow students in the Cafe at lunch.

Format

A data frame with 86 observations on the following 2 variables.

- napkins number of napkins used by the subject during the meal.
- sex a factor with levels female male Sex of the person being observed

Source

MAT 111 at Georgetown College

Examples

data(napkins)
nonresponse Non-Response to Surveys

Description
Results of a study on non-response to a mail survey. Subjects were residents of Denmark.

Format
A data frame with 4229 observations on the following 3 variables.

residence where the subject resides: either in Copenhagen, a city outside of Copenhagen, or in the countryside

gender sex of the subject

response Whether or not the subject responded to the mail survey

Source

nosmokeday Nicotine Withdrawal and Accidents

Description
Results of study conducted in Great Britain to see if nicotine withdrawal increases the risk of an accident.

Format
A data frame with 10 observations on the following 3 variables.

year calendar year

Injuries.before.NSD number of injury accidents on the day one week prior to National No Smoke Day in the United Kingdom

Injuries.on.NSD number of injury accidents on National No Smoke Day in the United Kingdom

Source
oldfaithful

Old Faithful

Description

Old faithful geyser at Yellowstone Park.

Format

A data frame with 299 observations on the following 2 variables.

- **Duration** duration of eruption, in minutes
- **TimeNext** time until the next eruption, in minutes

Source

Unknown

ostrichtemp

Body and Brain Temperatures of Ostriches

Description

Body and brain temperatures of six free-ranging ostriches.

Format

A data frame with 6 observations on the following 2 variables.

- **body.temp** carotid arterial blood temperature of the ostrich (degrees Centigrade).
- **brain.temp** brain temperature (near hypothalamus) of the ostrich (degrees Centigrade).

Source

Ovarian Cancer Study

Description

Results of a retrospective study, conducted in 1973, on 299 women who been surgically treated for ovarian cancer 10 years before.

Format

A data frame with 299 observations on the following 4 variables.

- **stage**: factor indicating the stage of the cancer at the time of operation (early, advanced)
- **operation**: factor indicating the amount of tissue removed during surgery (radical, limited)
- **survival**: whether or not the subject was still alive after ten years (yes, no)
- **xray**: factor indicating whether or not the subject also received x-ray treatments (yes, no)

Source

ParseFormula

Description

utility for extracting portions of formulas.

Usage

ParseFormula(formula,...)

Arguments

- `formula`, a formula
- `...`, additional arguments, should folks decide to add them someday

Value

an object of class parsedFormula, used to compute on the language

Author(s)

Inspired by similar function in package mosaic. Included in this package to reduce dependency.
\textbf{pbinomGC} \hspace{1cm} \textit{Graphical Calculator for Binomial Curve Probabilities}

\textbf{Description}

Shades desired areas under rectangles of probability histogram for binomial, returns numerical value of the area.

\textbf{Usage}

\texttt{pbinomGC(bound, region="below", size=100, prob=0.5, graph=FALSE)}

\textbf{Arguments}

- \texttt{bound} \hspace{1cm} A numerical vector of length 1 or 2, range of shaded rectangles
- \texttt{region} \hspace{1cm} A character string. Default is "below". Possible values are "between" (when boundary consists of two numbers), "below", "above", and "outside" (again when boundary consists of two numbers)
- \texttt{size} \hspace{1cm} Number of trials
- \texttt{prob} \hspace{1cm} Probability of success
- \texttt{graph} \hspace{1cm} produce graph?

\textbf{Value}

Numerical value of probability.

\textbf{Author(s)}

Homer White \texttt{<hwhite0@georgetowncollege.edu>}

\textbf{Examples}

\#This gives P(X \leq 6) for binom X with 10 trials, chance of success 0.70 on each trial:
pbinomGC(6, region="below", size=10, prob=0.70)

\#This gives P(45 \leq X \leq 55), where X is binom with 100 trials,
\#chance of success on each trial p = 0.50:
pbinomGC(c(45, 55), region="between", size=100, prob=0.50)

\#This gives P(X \geq 7) = P(X > 6), for binom X with 10 trials,
\#70\% chance of success on each trial
pbinomGC(6, region="above", size=10, prob=0.7)
pchisqGC

Graphical Calculator for Chi-Square Probabilities

Description
Shades desired areas under a specified chi-square curve, returns numerical value of the area.

Usage

```
pchisqGC(bound, region="above", df=NA, xlab="chi_square_statistic", graph=FALSE)
```

Arguments

- **bound**: A numerical vector of length 1, indicating boundary of shaded region on horizontal axis
- **region**: A character string. Possible values are "below" and "above"
- **df**: Degrees of freedom of the chi-square distribution
- **xlab**: Label for the horizontal axis
- **graph**: produce graph?

Value
Numerical value of area under curve over region. Also plots the chi-square curve with the shaded area.

Author(s)
Homer White <hwhite@georgetowncollege.edu>

Examples

```
#This gives P(X < 6.8) where X is chisq with 3 degrees of freedom:  
pchisqGC(6.8, df=3, region="below")

#This gives P(X >= 6.8), where X is chisq with 3 degrees of freedom  
pchisqGC(6.8, df=3, region="above")
```
Description

A study of students at Penn State University.

Format

A data frame with 190 observations on the following 9 variables.

- **Sex**: a factor with levels F M
- **HrsSleep**: how many hours of sleep the subject gets per night
- **SQpick**: a factor with levels Q S. Each subject was presented with two letters (S and Q), and asked to pick one. This variable indicates which letter the subject picked.
- **Height**: height in inches
- **RandNumb**: a numeric vector: Each subject was asked to choose randomly an integer from 1 to 10.
- **Fastest**: highest speed, in mph, at which subject has ever driven a car
- **RtSpan**: span of the right hand, in centimeters.
- **LftSpan**: span of the left hand, in centimeters.
- **Form**: a factor with levels Q or S or Q or S. The order of presentation of the S and Q options to the subject varied from one survey form to another. This variable indicates which letter was presented first on the form.

Source

plot.GClm

Print Function for GC Linear Regression

Description

Utility diagnostic plot

Usage

```r
## S3 method for class 'GClm'
plot(x, y, ...)
```
pnormGC

Arguments

 x An object of class GCttest.
 y ignored
 ... ignored
 GClm an object of class GClm

Value

 graphical output

Author(s)

 Homer White <hwhite@georgetowncollege.edu>

pnormGC

Graphical Calculator for Normal Curve Probabilities

Description

 Shades desired areas under a specified normal curve, returns numerical value of the area.

Usage

 pnormGC(bound,region="below",mean=0.sd=1,graph=FALSE)

Arguments

 bound A numerical vector of length 1 or 2, indicating boundary(ies) of shaded region on horizontal axis
 region A character string. Default is "below". Possible values are "between" (when boundary consists of two numbers), "below", "above", and "outside" (again when boundary consists of two numbers)
 mean Mean of the distribution
 sd Standard deviation of the distribution
 graph Will produce graph of the probability

Value

 Numerical value of area under curve over region.

Author(s)

 Homer White <hwhite@georgetowncollege.edu>
Examples

```r
# This gives \( P(X < 75) \) for \( X \) normal with mean = 70 and sd = 4:
pnormG(75, region = "below", mean = 70, sd = 4)

# This gives \( P(X > 71) \) for \( X \) normal with mean = 70 and sd = 4:
pnormG(71, region = "above", mean = 70, sd = 4)

# This gives \( P(-1 < X < 1) \), for standard normal \( X 
\)

pnormG(c(-1,1), region = "between")

# This gives \( P(X < 68 \text{ or } X > 71) \), for \( X \) normal with mean = 70 and sd = 4:

pnormG(c(68,71), region = "outside", mean = 70, sd = 4)
```

Description

An app to explore the idea of influence. Note how the influence of the blue point wanes as the number of points in the central cloud increases, and also wanes as the correlation of the central cloud increases.

Usage

Points2Watch()

Value

Graphical output.

Note

Requires package `manipulate`, available only in RStudio. Uses `mvrnorm` from package MASS.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) Points2Watch()

## End(Not run)
```
popsamp
Sampling From a Population

Description

Instructional function, and possibly a utility function for some apps.

Usage

```r
popsamp(n, pop, ...)
```

Arguments

- `n` number of items to sample
- `pop` data frame, from which to sample `n` rows
- `...` other arguments passed to function

Value

The sample, as a data frame.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
data(imagpop)
popsamp(10, imagpop)  # Simple random sampling (no replacement)
popsamp(10, imagpop, replace=TRUE)  # Random sampling with replacement
```

predict.GClm
Prediction Function for GC Linear Regression

Description

Used by generic predict function

Usage

```r
## S3 method for class 'GClm'
predict(object, x, ...)
```
print.GClm

Arguments

object An object of class GClm
x value of the predictor variable
... ignored

Value

numeric prediction

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

predict fastest speed driven, for person with GPA=3.0:
SpeedModel <- lmGc(fastest~GPA, data=mllisurvey)
predict(SpeedModel, x=3.0)
print.gcp1test

Print Function for GC Proportion Test (One-Sample)

Description
Utility print function

Usage

```r
## S3 method for class 'gcp1test'
print(x, ...)
```

Arguments

- `x`: An object of class `gcp1test`.
- `...`: ignored

Value
Output to the console.

Author(s)
Homer White <hwhite@georgetowncollege.edu>

print.gcp2test

Print Function for GC Proportions Test (Two-Sample)

Description
Utility print function

Usage

```r
## S3 method for class 'gcp2test'
print(x, ...)
```

Arguments

- `x`: An object of class `gcp2test`.
- `...`: ignored

Value
Output to the console.
print.GCttest

Author(s)
Homer White <hwhite@georgetowncollege.edu>

print.GCttest Print Function for ttestGC

Description
Utility print function

Usage
S3 method for class 'GCttest'
print(x,...)

Arguments
- x An object of class GCttest.
- ... ignored

Value
Output to the console.

Author(s)
Homer White <hwhite@georgetowncollege.edu>

PropSampler Repeated Sampling for a Proportion (Slow)

Description
An app to explore the sampling distribution of the sample proportion. The user takes one sample at a time from a given population. Output to the console describes relevant features of the sample, and graphical output updates the empirical distribution of the sample proportion.

Usage
PropSampler(form,data,max.sample.size=110,show.sample=FALSE)
Arguments

form An object of class formula, of the form ~x, where x is a factor from the data frame supplied by:

data A dataframe, representing the imaginary population.

max.sample.size Maximum sample size on the slider.

show.sample If TRUE, the complete sample will be output to the console, in addition to the summary information.

Value

Graphical and numerical output.

Note

Uses manipulate.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

Not run:
data(Imagpop)
if (require(manipulate)) PropSampler(~cappun, data=Imagpop)

End(Not run)

proptestGC
Proportions Procedures

Description

Employs the normal approximation to perform test for one or two proportions.

Usage

proptestGC(x, n=numeric(), p=NULL, data, alternative="two.sided", success="yes", first=NULL, conf.level=0.95, correct=TRUE, graph=FALSE, verbose=TRUE)
Arguments

x Either a formula or a numeric vector. If formula, it must be of the form ~x indicating the single variable under study, or of the form ~x+y, in which case x is the explanatory grouping variable (categorical with two values) and y is the response categorical variable with two values. When summary data are provided, x is a numeric vector of success counts.

n When not empty, this is a numeric vector giving the size of each sample.

p Specifies Null Hypothesis value for population proportion. If not set, no test is performed.

data Data frame that supplies the variables x and y.

alternative "two-sided" requests computation of a two-sided P-value; other possible values are "less" and "greater".

success When x is a formula, this argument indicates which value of variable x (in case of ~x) or y (in case of ~x+y) is being counted as a success. When working with formula-data input the value of this parameter MUST be set, even when the variable has only two values.

first When performing 2-sample procedures, this argument specifies which value of the explanatory variable constitutes the first group.

conf.level Number between 0 and 1 indicating the confidence-level of the interval supplied.

correct Applies continuity correction for one-proportion procedures. It is ignored when 2-proportions are performed.

graph If TRUE, plot graph of P-value.

verbose Indicates how much output goes to the console

Value

A list, either of class "gcp1test" (one-proportion) or "gcp2test" (two proportions). Components of this list that may be usefully queried include: "statistic", "p.value", and "interval".

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

data(mlllsurvey)
#2-proportions, formula-data input, 95%-confidence interval only:
proptestGC(~sex+seat,data=mlllsurvey,success="2_middle")

#For other confidence levels, use argument conf.level. For 90%-interval for one proportion p:
proptestGC(~sex,data=mlllsurvey,success="male",conf.level=0.90)

#One proportion, formula-data input, confidence interval and two-sided test with H_0: p = 0.33:
proptestGC(~seat,data=mlllsurvey,success="1_front",p=0.33)

#Summary data:
In first sample, 23 successes out of 100 trials. In second sample, 33 out of 110.
proptestGC(x=c(23,33),n=c(100,110))

#Summary data:
In one sample, 40 successes in 100 trials. Testing whether \(p = 0.45 \).
proptestGC(40,100,p=0.45,correct=TRUE)

#Want less output? Set argument verbose to FALSE:
proptestGC(~sex+seat,data=mll1survey,success="2_middle",p=0.33,verbose=FALSE)

ptGC

Graphical Calculator for t-Curve Probabilities

Description

Shades desired areas under a specified t-curve, returns numerical value of the area.

Usage

```r
ptGC(bound, region="between", df=1, graph=FALSE)
```

Arguments

- `bound`: A numerical vector of length 1 or 2, indicating boundary(ies) of shaded region on horizontal axis
- `region`: A character string. Possible values are "between" (when boundary consists of two numbers), "below", "above", and "outside" (again when boundary consists of two numbers)
- `df`: degrees of freedom of the distribution
- `graph`: produce graph?

Value

Numerical value of area under curve over region. Also plots the t-curve with the shaded area.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

- This gives \(P(-2 < t < 2) \) for a t-random variable with 1 degree of freedom:
  ```r
  ptGC(c(-2,2),region="between",df=1)
  ```

- This gives \(P(t < -1) \) for a t-random variable with 5 degrees of freedom:
  ```r
  ptGC(-1,region="below",df=5)
  ```

- This gives \(P(t < -2 \text{ OR } t > 2) \), for a t-random variable with 5 degrees of freedom:
  ```r
  ptGC(c(-2,2),region="outside",df=5)
  ```
Pushups by Football Players at Georgetown College

Description

Two football players at GC asked their team-mates to do as many pushups as they could in two minutes.

Format

A data frame with 30 observations on the following 3 variables.

- **weight**: weight of subject in pounds.
- **pushups**: number of pushups completed.
- **position**: a factor with levels LINE SKILL: type of position played by the subject. Line positions require high body mass, skill positions require a lot of running around.

Source

MAT 111, Georgetown College

Randomized Experimental Designs

Description

Randomizes subjects into treatment groups according to specified criteria.

Usage

RandomExp(data,sizes=NULL,groups=NULL,block=NULL,seed=NULL)

Arguments

- **data**: A data frame containing the subjects to be randomized
- **sizes**: a numeric vector indicating the sizes of the treatment groups. Vector must sum to the number of subjects. If not provided, subjects will be randomized into two groups of size as nearly equal as possible.
- **groups**: a character vector giving the names of the groups. Names correspond to sizes specified in previous sizes. Length of groups must equal length of sizes.
- **block**: Variable(s) in the data frame with respect to which blocking is performed. In order to block with respect to more than one variable at once, enter as character vector, e.g.: c("Var1","Var2").
- **seed**: randomization seed, for reproducibility of results.
RectShade

Shade Rectangles for Discrete Distributions

Description

Utility function for `pbinomGC` ...

Usage

```r
RectShade(low, high, func, ...)  
```

Arguments

- `low`
 lower bound
- `high`
 upper bound
- `func`
 probability mass function
- `...`
 other arguments passed (to modify `func`)

Value

graphical side effect only

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Value

A data frame: the input frame `data` augmented with a variable `treat.grp` indicating the assignment of subjects to groups.

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

```r
data(SmallExp)  # small hypothetical list of subjects

# completely randomized design
RandomExp(SmallExp)

# Block with respect to sex:
RandomExp(SmallExp, sizes=c(8,8), groups=letters[1:2], block="sex")

# Block for both sex and athletic status:
RandomExp(SmallExp, sizes=c(8,8), groups=letters[1:2], block=c("sex","athlete"))
```

RectShade

Shade Rectangles for Discrete Distributions

Description

Utility function for `pbinomGC` ...

Usage

```r
RectShade(low, high, func, ...)  
```

Arguments

- `low`
 lower bound
- `high`
 upper bound
- `func`
 probability mass function
- `...`
 other arguments passed (to modify `func`)

Value

graphical side effect only

Author(s)

Homer White <hwhite0@georgetowncollege.edu>
RegEstimate

Estimation of Regression Coefficients

Description

An app to explore estimation of coefficients in simple regression.

Usage

```r
RegEstimate(x=1:10)
```

Arguments

- `x` A numerical vector, specifying the fixed set of x-values.

Value

Graphical and numerical output.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
# Not run:
if (require(manipulate)) RegEstimate()

# End(Not run)
```

rowPerc

Row Percents

Description

Computes row percentages for a given two-way table.

Usage

```r
rowPerc(tab)
```

Arguments

- `tab` A table, e.g., the result of `xtabs(~var1+var2, data=DataFrame)`.
Value

An object of class table, giving row percentages for the input table.

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

data(ledgejump)
MyTable <- xtabs(~weather+crowd.behavior,data=ledgejump)
rowPerc(MyTable)

saltmarsh

Effect of Soil Salinity on Plant Growth

Description

Result of an experiment conducted to investigate the effect of salinity level in soil on the growth of plants.

Format

A data frame with 24 observations on the following 3 variables.

- **salt**: amount of salt applied to the plot (in parts per million)
- **biomass**: total biomass of plot at the end of the study period (units unknown)
- **block**: field in which the plot was located

Details

From the source (see below): "Experimental fields of land were located at an agricultural field station, and each field was divided into six smaller plots. Each of the smaller plots was treated with a different amount of salt (measured in ppm) and the biomass at the end of the experiment was recorded."

Source

The Course Notes of Carl Schwarz, Simon Fraser University: http://people.stat.sfu.ca/~cschwarz/CourseNotes/
SampDist2Means

SampDist2Means \hspace{1cm} Distribution of the Difference of Sample Means

Description

An app to explore the Central Limit Theorem in the context of the difference of sample means.

Usage

SampDist2Means(pop,max.samp.sizes=50,sim.reps=1000)

Arguments

pop A data frame representing the population from which samples are taken.

max.samp.sizes Largest sample sizes shown on the sliders.

sim.reps Number of simulation repetitions to construct empirical distribution of difference of sample means.

Value

Graphical and numerical output.

Note

Uses manipulate in RStudio. Also requires package lattice.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
data(imagpop)
if (require(manipulate)) SampDist2Means(imagpop)

## End(Not run)
```
SampDist2Props

Difference of Two Sample Proportions

Description

An app to explore the sampling distribution of the difference of two sample proportions.

Usage

```r
SampDist2Props(form, data, max.sample.sizes=100, sim.reps=1000)
```

Arguments

- `form`: An object of class formula, of the form ~x+y where x and y are factors supplied by:
- `data`: A dataframe, representing the imaginary population. In the formula, both factors should have exactly two levels. The variable x represents the explanatory variable.
- `max.sample.sizes`: Maximum sample sizes allowed on the sliders.
- `sim.reps`: Number of samples to construct the empirical distribution.

Value

Graphical and numerical output.

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

```r
## Not run:
data(imagpop)
SampDist2Props(~sex+cappun, data=imagpop)

## End(Not run)
```
Description

An app to explore the Central Limit Theorem.

Usage

```r
SampDistMean(pop,max.samp.size=50,sim.reps=1000)
```

Arguments

- **pop**
 - A data frame representing the population from which samples are taken.
- **max.samp.size**
 - Largest sample size shown on the slider.
- **sim.reps**
 - Number of simulation repetitions to construct empirical distribution of the sample mean.

Value

Graphical and numerical output.

Note

Uses `manipulate` in RStudio.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
data(imagpop)
if (require(manipulate)) SampDistMean(imagpop)

## End(Not run)```
Description

SAT scores by state. The variables are as follows:

- state. A state in the U.S.
- expend. Mean annual expenditure per student (in 1000$).
- ratio. Mean student-teacher ratio.
- salary. Mean annual teacher salary.
- frac. Percentage of students in the state who take the SAT.
- verbal. Mean SAT Verbal score for the state.
- math. Mean SAT Math score for the state.
- sat. Sum of mean Verbal and mean Math.

Format

A data frame with 50 rows and 8 variables

Source


Description

Results of an experiment conducted on ten Weddell seals.

Format

A data frame with 10 observations on the following 2 variables.

- o2.nonfeeding Oxygen consumption during recovery time after a dive during which no plankton was consumed by the seal, in ml of O2 per kilogram of weight
- o2.feeding Oxygen consumption during recovery time after a dive during which plankton was consumed, in ml of O2 per kilogram of weight

Source

**ShallowReg**

**Regression Line Too Shallow?**

**Description**

The regression line is not as steep as the SD Line (line through point of averages, with slope = \( \frac{sd(y)}{sd(x)} \)). The difference is especially noticeable when the scatterplot is the result of a sample from a bivariate normal distribution. This app explains why we use the regression line to predict y from x, even though the SD line appears to be a better linear summary of the scatterplot. Can be used as a starting-point for a discussion of "regression to the mean."

**Usage**

\[
\text{ShallowReg}(n=900, \rho=0.5)
\]

**Arguments**

- `n` Number of points in the scatterplot.
- `rho` Target correlation for the scatterplot. Points are selected from a standardized bivariate normal distribution, with correlation rho.

**Value**

Graphical output.

**Note**

Uses `manipulate`, available only in RStudio, and `mvrnorm` from package MASS.

**Author(s)**

Homer White <hwhite@georgetowncollege.edu>

**Examples**

```r
Not run:
if (require(manipulate)) ShallowReg()

End(Not run)
```
Simple Random Sample

Description
An app to investigate the visual and numerical differences between a sample and a population. A sample is drawn from the input population and then a variable of choice is selected by the user. If a categorical variable is chosen, the user sees a bar chart with red bars designating the population and blue bars designating the sample. Simultaneously, a summary table (of percents) is output to the console for both the population and the sample. If a numerical variable is chose, the kernel density plot for the population is plotted in red and the histogram for each new sample is plotted in blue. Simultaneously, the summary information for minimum, maximum, quartiles, median, mean, and standard deviation are output to the console for both the population and the sample. The size of the sample can be changed to explore how this affects statistics and the plots.

Usage
SimpleRandom()

Value
Graphical and numerical output

Author(s)
Rebekah Robinson <rebekah_robinson@georgetowncollege.edu>

Examples
## Not run:
if (require(manipulate)) SimpleRandom()

## End(Not run)

Skewer

Description
An app to illustrate the effect of skewness on the shape of a boxplot.

Usage
Skewer()
**Value**

Graphical output.

**Note**

Requires `manipulate`; uses functions from package `lattice`.

**Author(s)**

Homer White <hwhite0@georgetowncollege.edu>

**Examples**

```r
Not run:
if (require(mainpulate)) Skewer()

End(Not run)
```

---

**slowgoodness**

*Chi Square Resampler (One at a Time) for Goodness-of-Fit*

**Description**

An app to illustrate use of the chi-square statistic to test for goodness of fit. The P-value is computed by resampling, and the resamples are done one at a time. A histogram of resampled chi-square statistics is displayed after each resample, and summary information is output to the console.

**Usage**

```r
SlowGoodness(x,p)
```

**Arguments**

- `x` a one-dimensional table, or a vector of observed counts
- `p` vector of null probabilities

**Value**

Graphical and numerical output

**Author(s)**

Homer White <hwhite0@georgetowncollege.edu>
Examples

```r
Not run:
throws <- c(one=8,two=18,three=11,four=7,five=9,six=7)
if (require(manipulate)) SlowGoodness(throws,p=rep(1/6,6))

End(Not run)
```

---

**SmallExp**  
*A Small Experiment*

### Description
Subjects in a hypothetical experiment

### Format
A data frame with 16 observations on the following 3 variables.

- **name**: name of the subject
- **sex**: sex of the subject
- **athlete**: whether or not the subject is an athlete

---

**stumps**  
*Larvae on Stumps*

### Description
Biologists were interested in whether beetles prefer areas where beavers have cut down cottonwood trees. (The tree-stumps produce tender green shoots that beetles are thought to like.) 23 circular plots, all of equal area, were studied. For each plot the researchers counted the number of cottonwood stumps, and also the number of clusters of beetle larvae found in the plot.

### Format
A data frame with 23 observations on the following 2 variables.

- **stumps**: number of stumps in the plot
- **larvae**: number of larvae clusters in the plot

### Source
Basic Practice of Statistics, by Moore and McCabe.
### Temperature

**Description**

Average temperatures for cities in the United States.

- **city** Name of the city
- **latitude** Latitude of the city, in degrees north of the Equator
- **JanTemp** Mean temperature of the city in January.
- **AprTemp** Mean temperature of the city in April.
- **AugTemp** Mean temperature of the city in August.

**Format**

A data frame with 20 observations on 5 variables.

**Source**


### tExplore

**Description**

Plot the density curve of a t random variable at various degrees of freedom. Compare with the standard normal curve.

**Usage**

tExplore()

**Value**

Used only for graphical side effects.

**Author(s)**

Homer White <hwhite0@georgetowncollege.edu>

**Examples**

```r
Not run:
if (require(manipulate)) tExplore()

End(Not run)
```
theme.rpres  

**Lattice Theme or R Presentations**

**Description**

Modifies the current theme for use with lattice graphics in R Presentation documents. Increases size of title, axis labels and axis numbers, thickens some lines, etc.

**Usage**

```r
theme.rpres()
```

**Value**

Returns a list to be supplied as the `theme` to the `lattice.par.set()` function.

**Note**

Deprecated in favor of `themerpres()`. May not appear in future versions.

**See Also**

`trellis.par.set.show.settings`

**Examples**

```r
trellis.par.set(theme=theme.rpres())
```

---

themerpres  

**Lattice Theme or R Presentations**

**Description**

Modifies the current theme for use with lattice graphics in R Presentation documents. Increases size of title, axis labels and axis numbers, thickens some lines, etc.

**Usage**

```r
themerpres()
```

**Value**

Returns a list to be supplied as the `theme` to the `lattice.par.set()` function.

**See Also**

`trellis.par.set.show.settings`
Examples

trellis.par.set(theme=themerpres())

tornado  Tornado Damage

Description

Tornado damage in the U.S., by state. Also includes Puerto Rico.

- state the state
- damage mean annual damage from tornados, over a five-year period, in millions of dollars

Format

A data frame with 51 observations on 2 variables.

Source

Moore and McCabe, The Basic Practice of Statistics.

tSampler  Illustrating the t-statistic

Description

An app to explore the distribution of the t-statistic. The user takes one sample at a time from a given population. Graphical output updates the empirical distribution of the sample mean.

Usage

tSampler(form,data,max.sample.size=30,show.sample=FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>form</td>
<td>An object of class formula, of the form ~x, where x is a numeric variable from the data frame supplied by:</td>
</tr>
<tr>
<td>data</td>
<td>A dataframe, representing the imaginary population.</td>
</tr>
<tr>
<td>max.sample.size</td>
<td>Maximum sample size on the slider.</td>
</tr>
<tr>
<td>show.sample</td>
<td>If TRUE, the complete sample will be output to the console, in addition to the summary information.</td>
</tr>
</tbody>
</table>
Value

Graphical and numerical output.

Note

Uses `manipulate`.

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

```r
Not run:
data(imagpop)
if (require(manipulate)) tSampler(~income,data=imagpop)

End(Not run)
```

description

t-tests and confidence intervals for one and two samples.

Usage

```r
ttestgc(x=NULL,mean=numeric(),sd=numeric(),n=numeric(),
mu=NULL,data=NULL,alternative="two.sided",var.equal=FALSE,
conf.level=0.95,graph=FALSE,first=NULL,verbose=TRUE)
```

Arguments

- **x**: If not NULL, then must be a formula. If a formula, then data must be a dataframe. For one sample t-procedures, x is of the form `~var`. For two-sample procedures, x is of the form `resp~exp`, where exp is factor with two values. If x is of form `~var1-var2`, then matched pairs procedures are performed.
- **mean**: When not NULL, contains sample mean(s). Length 1 for one sample t-procedures, Length 2 for two-sample procedures.
- **sd**: When not NULL, contains sample standard deviation(s).
- **n**: When not NULL, contains sample size(s).
- **mu**: Contains the null value for the parameter of interest. If not set, no test is performed.
- **data**: A data frame containing variables in formula x. Required when x is assigned.
alternative

"two-sided" requests computation of a two-sided P-value; other possible values are "less" and "greater".

degrees of freedom (var.equal)

When FALSE, use Welch's approximation to the degrees of freedom.

class

var.equal

conf.level

Number between 0 and 1 indicating the confidence-level of the interval supplied.

graph

If TRUE, plot graph of P-value.

first

If assigned, gives the value of the explanatory variable that is to count as the first sample.

verbose

Indicate how much output goes to console

Value

A list of class "GCttest" Components of the list that may be usefully queried include: "statistic", "p.value", and "interval".

Author(s)

Homer White <hwhite0@georgetowncollege.edu> for matched pairs.

Examples

#One-sample t, 95%-confidence interval only:
  ttestGC(~fastest,data=m111survey)

#For other confidence levels, set argument conf.level as desired. For 90%-interval:
  ttestGC(~fastest,data=m111survey,conf.level=0.90)

# One-sample t, 95%-confidence interval and two-sided test with H_0: mu = 100:
  ttestGC(~fastest,data=m111survey,mu=100)

#Two-sample t, 95%-confidence interval only:
  ttestGC(fastest~sex,data=m111survey)

#control order of groups with argument first:
  ttestGC(fastest~sex,data=m111survey,first="male")

# Matched pairs, confidence interval with one-sided test, H_0: mu-d = 0:
  ttestGC(~ideal_ht-height,data=m111survey,mu=0,alternative="greater")

#Summary data, one sample, one-sided test with H_0: mu = 52.5:
  ttestGC(mean=55, sd=4, n=16, mu=52.5, alternative="greater")

#Summary data, two samples:
  ttestGC(mean=c(50,55), sd=c(3,4), n=c(25,40), mu=0)
**Type2Errors**

**Type I and Type II Errors**

---

**Description**

An app to explore the concepts of Type I and Type II errors, and the concept of power. We take samples from a population that is imagined to be normal, and perform the t-procedures for one mean. The Null Hypothes is $H_0: \mu=170$. A slider allows us to vary the true mean $\mu$.

**Usage**

```
Type2Errors()
```

**Value**

Graphical and numerical output.

**Note**

Uses manipulate.

**Author(s)**

Homer White <hwhite@georgetowncollege.edu>

**Examples**

```r
Not run:
if (require(manipulate)) Type2Errors()
End(Not run)
```

---

**ucdavis1**

**UC Davis #1**

---

**Description**

Results of a survey of students at UC-Davis.

- Sex a factor with levels Female, Male
- TV Number of hours spent watching TV per week
- computer number of hours spent on computer per week
- Sleep hours of sleep per night
- Seat a factor with levels Back, Front, Middle
  Where do you prefer to sit in class, when you have a choice?
• alcohol number of alcoholic drinks consumed per week
• Height height in inches
• momheight height of mother, in inches
• dadheight height of father, in inches
• exercise number of hours of exercise per week
• GPA grade point average
• class a factor with levels LibArts NonLib Student Category: liberal arts or not

Format
A data frame with 173 observations on 12 variables..

Source

udavis2

Description
Results of a survey of students at UC-Davis.

• Sex Sex of the subject
• GPA Grade point average of the subject
• Seat Where do you prefer to sit in a classroom, when you have a choice?
• alcohol How many drinks do you have per week, on average?
• wtfeel How do you feel about your weight?
• height Your height in inches
• idealht Your ideal height
• momheight Height of your mother
• dadheight Height of your father
• hand What is your dominant hand?
• looks When it comes to judging a person as a potential mate, how important are looks?
• friends With whom do you make friends more easily: people of the same sex or of the opposite sex?
• cheat Do you cheat on exams?
• smoke Are you a smoker?

Format
A data frame with 239 observations on 14 variables.

Source
**Variability**

**UnderShade**  
*Shade Under Density Curves*

**Description**

Utility function for ptGC, pnormGC, pchisqGC, possibly others

**Usage**

```r
UnderShade(low, high, func, ...)
```

**Arguments**

- `low`: lower bound
- `high`: upper bound
- `func`: density function
- `...`: other arguments passed (to modify `func`)

**Value**

graphical side effect only

**Author(s)**

Homer White <hwhite@georgetowncollege.edu>

---

**Variability**

**Description**

An app to investigate how the variance and sample size affects the shape of a histogram and violin plot generated from normal data. Summary data (minimum, median, mean, maximum, and quartiles) are displayed in the output for each random sample drawn.

**Usage**

```r
Variability()
```

**Value**

Graphical and numerical output

**Note**

Uses histogram and bwplot from the lattice package.
Description
An app to illustrate the effectiveness of the correlation coefficient as a measure of the strength of a linear relationship.

Usage
VaryCorrelation(n=300)

Arguments
n number of randomly generated-points in the scatterplot.

Value
Graphical output.

Note
Uses manipulate in RStudio, and mvrnorm from package MASS.

Author(s)
Homer White <hwhite0@georgetowncollege.edu>

Examples
## Not run:
if(require(manipulate)) VaryCorrelation(n=500)
## End(Not run)
**Description**

A Study of Risky Behaviors in High School Seniors, from year 2003.

- Sex
- Grades Typical grades you earn in school
- WtAction What do you plan to do about your weight?
- Seatbelt How often do you wear a seat-belt?
- Sunscreen How much do you wear sunscreen?
- Grades_1 Same as grades, but with some groups combined
- Sun_1 Same as sunscreen, but with some groups combined

**Format**

A data frame with 3042 observations on 7 variables.

**Source**

Index

*Topic datasets
  alcohol, 4
  attitudes, 5
  beans, 7
  chugtime, 13
  deathpen, 16
  FakeSchool, 19
  fuel, 20
  galton, 21
  gcfeling, 21
  gcstudents, 22
  gss02, 22
  gss08, 23
  gss2012, 24
  hair_and_act, 24
  handheight, 25
  hanford, 25
  hanford2, 26
  imagpop, 26
  iqsiblings, 27
  knifeorgunblock, 27
  labels, 28
  ledgejump, 28
  m11survey, 29
  m11surveyfa12, 30
  m11surveyfa13, 31
  music, 33
  napkins, 33
  nonresponse, 34
  nosmokeday, 34
  oldFaithful, 35
  ostrichtemp, 35
  Ovarian, 36
  pennstate1, 39
  pushups, 49
  saltmarsh, 52
  sat, 56
  seals, 56
  SmallExp, 60
  stumps, 60
  temperature, 61
  tornado, 63
  ucdavis1, 66
  ucdavis2, 67
  youthrisk03, 70
*Topic graphics
  theme.rpres, 62
  themerpres, 62
*Topic package
  tigerstats-package, 4
  alcohol, 4
  attitudes, 5
  barchart, 6
  barchartGC, 6
  beans, 7
  BinomNorm, 8
  BinomSkew, 8
  binomtestGC, 9
  chisq.testGC, 10
  ChisqSimSlow, 11
  chisqtestGC, 12
  chugtime, 13
  CI.mean, 14
  CIProp, 14
  colPerc, 15
  deathpen, 16
  DtrellHist, 16
  DtrellScat, 17
  EmpRule, 18
  EmpRuleGC, 18
  FakeSchool, 19
  FindRegLine, 20
  fuel, 20
galton, 21
gcfeeling, 21
gcstudents, 22
gss02, 22
gss08, 23
gss2012, 24
hair_and_act, 24
hanford1, 25, 26
hanford2, 26
imagpop, 26
iqsiblings, 27
knifeorgunblock, 27
labels, 28
ledgejump, 28
lmGC, 29
m111survey, 29
m111surveyfa12, 30
m111surveyfa13, 31
MeanSampler, 32
music, 33
napkins, 33
nonresponse, 34
nosmokeday, 34
oldfaithful, 35
ostrichtemp, 35
Ovarian, 36
ParseFormula, 36
pbinomGC, 37
pchisqGC, 38
pennstate1, 39
plot.GClm, 39
pnormGC, 40
Points2Watch, 41
popsamp, 42
predict.GClm, 42
print.GClm, 43
print.gcp1test, 44
print.gcp2test, 44
print.GCtttest, 45
PropSampler, 45
proptestGC, 46
ptGC, 48
pushups, 49
RandomExp, 49
RectShade, 50
RegEstimate, 51
rowPerc, 51
saltmarsh, 52
SampDist2Means, 53
SampDist2Props, 54
SampDistMean, 55
sat, 56
seals, 56
ShallowReg, 57
show.settings, 62
SimpleRandom, 58
Skewer, 58
SlowGoodness, 59
SmallExp, 60
stumps, 60
temperature, 61
tExplore, 61
theme.rpres, 62
themerpres, 62
tigerstats (tigerstats-package), 4
tigerstats-package, 4
tornado, 63
trellis.par.set, 62
tSampler, 63
ttestGC, 64
type12Errors, 66
ucdavis1, 66
ucdavis2, 67
UnderShade, 68
Variability, 68
VaryCorrelation, 69
xtabs, 6
youthrisk03, 70